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Abstract. We study the problem of malleability of Bitcoin transactions. Our first two contri-
butions can be summarized as follows:
(i) we perform practical experiments on Bitcoin that show that it is very easy to maul Bitcoin

transactions with high probability, and
(ii) we analyze the behavior of the popular Bitcoin wallets in the situation when their transac-

tions are mauled; we conclude that most of them are to some extend not able to handle this
situation correctly.

The contributions in points (i) and (ii) are experimental. We also address a more theoretical
problem of protecting the Bitcoin distributed contracts against the “malleability” attacks. It is
well-known that malleability can pose serious problems in some of those contracts. It concerns
mostly the protocols which use a “refund” transaction to withdraw a financial deposit in case
the other party interrupts the protocol. Our third contribution is as follows:
(iii) we show a general method for dealing with the transaction malleability in Bitcoin contracts.

In short: this is achieved by creating a malleability-resilient “refund” transaction which
does not require any modification of the Bitcoin protocol.

1 Introduction

Malleability is a term introduced in cryptography by Dolev et al. [15]. Very informally, a crypto-
graphic primitive is malleable if its output C can be transformed (“mauled”) to some “related” value
C ′ by someone who does not know the cryptographic secrets that were used to produce C. For
example, a symmetric encryption scheme (Enc,Dec) is malleable if the knowledge of a ciphertext
C = Enc(K,M) suffices to compute C ′ such that M ′ = Dec(K,C ′) is not equal to M , but is
related to it (e.g. M ′ is equal to M with the first bit set to 0). It is easy to see that the standard cryp-
tographic security definitions (like the semantic security of encryption schemes) in general do not
imply non-malleability, and hence the non-malleability is usually viewed as an additional (but often
highly desirable) feature of the cryptosystems. Since its introduction the concept of non-malleability
was studied profoundly, mostly by the theory community, in several different contexts including the
encryption and commitment schemes, zero-knowledge [15], multiparty computation protocols [12],
hash functions and one-way functions [10], privacy amplification [14], tamper-resilient encoding
[16], and many others. Until last year, however, the malleability problem remained largely out of
scope of the interests of the security practitioners.

This situation has changed dramatically, when the MtGox Bitcoin exchange suspended its trading
in February 2014, announcing that around 850,000 bitcoins belonging to customers were stolen by
an attacker exploiting the “malleability of the Bitcoin transactions” [18]. Although there is a good
? This work was supported by the WELCOME/2010-4/2 grant founded within the framework of the EU In-

novative Economy (National Cohesion Strategy) Operational Programme. Moreover, Łukasz Mazurek is a
recipient of the Google Europe Fellowship in Security, and this research is supported in part by this Google
Fellowship.

?? marcin.andrychowicz@crypto.edu.pl
? ? ? stefan.dziembowski@crypto.edu.pl

† daniel.malinowski@crypto.edu.pl
‡ lukasz.mazurek@crypto.edu.pl



evidence that MtGox used the malleability only as an excuse [13], this announcement definitely
raised the awareness of the Bitcoin community of this problem, and in particular, as argued in [13]
it massively increased the attempts to exploit this weakness for malicious purposes.

The fact that the Bitcoin transactions are malleable has been known much before the MtGox
collapse [21]. Briefly speaking, “malleability” in this case means that, given a transaction T , that
transfers x bitcoins from an address A to address B (say), it is possible to construct another trans-
action T ′ that is syntactically different from T , but semantically it is identical (i.e. T ′ also transfers
x bitcoins from A to B)1. This can be done by anybody, and in particular by an adversary who does
not know A’s private key. On a high level, the source of the malleability comes from the fact that
in the current version of the Bitcoin protocol, each transaction is identified by a hash on its whole
contents, and hence in some cases such a T ′ will be considered to be a different transaction than T .

There are actually several ways T ′ can be produced from T . One can, e.g. exploit the malleabil-
ity of the signature schemes used in Bitcoin, i.e., the fact that given a signature σ (computed on
some message M with a secret key sk ) it is easy to compute another valid signature σ′ on M (with
respect to the same key sk )2. Since the standard Bitcoin transactions have a form T = (message M ,
signature σ onM ), thus T ′ = (M,σ′) is a valid transaction with the same semantics as T , but syntac-
tically different from T . Another method is based on the fact that Bitcoin permits more complicated
transactions than those in the format described above. More precisely, in the so-called “non-standard
transactions” the “σ” part is in fact a script in the stack based Bitcoin scripting language. Therefore,
e.g., adding dummy PUSH and POP instructions to σ produces σ′ that is operationally equivalent
to σ, yet, from the syntactic point of view it is different. See, e.g, [22,13] for more detailed list of
different ways in which the Bitcoin transactions can be mauled.

Recall that in order to place a transaction T on the block chain a user simply broadcasts T over
the network. Thus it is easy for an adversary A to learn T before it is included in the block chain.
Hence he can produce a semantically equivalent T ′ and broadcast T ′. If A is lucky then the miners
will include T ′ into the block chain, instead of T . At the first sight this does not look like a serious
problem: since T ′ is equivalent to T , thus the financial effect of T ′ will be identical to the effect of
T . The reason why malleability may cause problems is that typically in Bitcoin the transactions are
identified by their hashes. More precisely (cf., e.g, [8]), an identifier (TXID) of every transaction
T = (M,σ) is defined to be equal to H(M,σ), where H is the doubled SHA256 hash function.
Hence obviously TXID of T will be different than TXID of T ′.

There are essentially three scenarios when this can be a problem. The first one comes from the
fact that apparently some software operating on Bitcoin does not take into account the malleability
of the transactions. The alleged MtGox bug falls in this category. More concretely, the attack that
MtGox claimed to be the victim of looked as follows: (1) a malicious user P deposits x coins on his
MtGox account, (2) the client P asks MtGox to transfer his coins back to him, (3) MtGox issues a
transaction T transferring x coins to P , (4) the user P launches the malleability attack, obtaining T ′

that is equivalent to T but has a different TXID (assume that T ′ gets included into the block chain
instead of T ), (5) the user complains to MtGox that the transaction was not performed, (6) MtGox
checks that there is no transaction with the TXID H(T ) and concludes that the user is right, hence
MtGox credits the money back to the user’s account. Hence effectively P is able to withdraw his
coins twice. The whole problem is that, of course, in Step (6) MtGox should have searched not for
the transaction with TXID H(T ), but for any transaction semantically equivalent to T .

1 For a short description of Bitcoin and the non-standard transactions see Section 2.
2 This is because Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) that has the property

that for every signature σ = (r, s) ∈ {1, . . . , N − 1}2 the value σ′ = (r,N − s) is also a valid signature
on the same message and with respect to the same key as σ.
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The second scenario is related to the first one in the sense that it should not cause problems if
the users are aware that malleability attacks can happen. It is connected to the way in which the
procedure of “giving change” is implemented in Bitcoin. Suppose a user A has 3B as an unspent
output of the transaction T0 on the block chain, and he wants to transfer 1B to some other user B.
Typically, what A would do in this case is: create a transaction T1 that has input T0 and has two
outputs: one that can be claimed by B and has value 1B, and the one that can be claimed by himself
(i.e. A) and has value 2B. He would then post T1 on the block chain. If he now creates a further
transaction T2 that claims money from T1 without waiting for T1 to appear on the block chain, then
he risks that T2 will be invalid, in case someone mauls T1.

The third scenario is much more subtle, as it involves the so-called Bitcoin contracts which are
protocols to form financial agreements between mutually distrusting Bitcoin users. In this paper we
assume readers familiarity with this Bitcoin feature. For an introduction to it see, e.g., [19,4,3] (in
this paper we use the notation from [4,3]). Recall that contracts are more complicated than normal
money transfers in the standard transactions. To accomplish their goal contracts use the non-standard
transactions. One of the common techniques used in constructing such contracts is to let the users
sign a transaction T1 before its input T0 is included in the block chain. Very informally speaking, the
problem is that T1 is constructed using the TXID H(T0), which means that an adversary that mauls
T0 into some (equivalent but syntactically different) T ′

0 can make the transaction T1 invalid. There
are many examples of such situations. One of them is the “Providing a deposit” contract from [19],
which we describe in more detail in Section 4, where we also explain this attack in more detail. Note
that, unlike in the first two scenarios, this problem cannot be mitigated by patching the software.

1.1 Possible fixes to the Bitcoin malleability problem

There are several ways in which one can try to fix the problems caused by the malleability of Bitcoin
transactions. For example one can try to modify Bitcoin in order to eliminate malleability from it.
Such proposals have indeed been recently put forward. In particular, Pieter Wuille [22] proposed a
number of ad-hoc methods to mitigate this problem, by restricting the syntax of Bitcoin transactions.
While this interesting proposal may work in practice, it is heuristic and it comes with no formal
argument. In particular, it implicitly assumes that the only way to maul the ECDSA signatures is the
one described in Footnote 2, and we are not aware of any formal proof that this is indeed the case.

In our previous paper [3] we proposed another modification of Bitcoin which eliminates the
malleability problem. The idea of this modification is to identify the transactions by the hashes
of their simplified versions (excluding the input scripts). With this modification one can of course
still modify the input script of the transaction, but the modified transaction would have the same
hash. Unlike [22] this solution does not rely on heuristic properties of the signature schemes. On
the other hand, the proposal of [22] may be easier to implement in practice, since it requires milder
modifications of the Bitcoin specification.

Another solution proposed recently by Peter Todd [1] is to introduce a new instruction
OP CHECKLOCKTIMEVERIFY to the Bitcoin scripting language that allows a transaction output to
be made unspendable until some point in the future. It does not concern the problem of malleability
directly, but using this opcode would allow to easily create Bitcoin contracts resilient to malleability.

Unfortunately, changing the Bitcoin is in general hard, since it is not controlled by any central
authority, and hence the modifications done without proper care can result in a catastrophic fork, i.e. a
situation where there is a disagreement among the honest parties about the status of transactions3.

3 An example of such a fork was experienced by the Bitcoin community in March 2013, when it was caused
by a bug in a popular mining client software update [11]. Fortunately it was resolved manually, but it is still
remembered as one of the moments when Bitcoin was close to collapse.
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Thus, it is not clear if such modifications will be implemented in the close future. It is therefore
natural to ask what can be done, assuming that the Bitcoin system remains malleable.

First of all, fortunately, as described above in many cases malleability is not a problem if the
software is written correctly, and therefore the most obvious thing to do is the following.

Direction 1: Educate the Bitcoin software developers about this issue. Convince them that it is a
real threat and they should always test their software against such attacks.

The only context in which the malleability cannot be dealt with by better programming are the
Bitcoin contracts. Hence a natural research objective is as follows.

Direction 2: Develop a technique that helps to deal with the malleability of Bitcoin transactions in
the Bitcoin contracts.

The goal of this paper is to contribute to both of these tasks.

1.2 Our contribution

The technical contents of this paper is divided into two parts corresponding to the research directions
described above. We first focus on “Direction 1” (this is done in Section 3). Since most of the
software practitioners will probably only care about problems where the threat is real, not theoretic,
we executed practical experiments that examine the feasibility of the malleability attacks. It turns
out that these attacks are quite easy to perform, even by an attacker that has resources comparable
to those of an average user. In fact, our experiments show that it is relatively easy to achieve success
rates close to 50%.

We then analyze the behavior of popular Bitcoin clients when they are exposed to such attacks.
Our results indicate that all of them show a certain resilience to such attacks. In particular we did
not identify weaknesses that would allow users to steal money (as argued in Section 1.3 this is
in fact something that one would expect from the beginning). On the other hand, we identified a
number of smaller weaknesses in most of these clients. In particular, we observed that in many
cases the malleability attack results in making the user unable to issue further transactions, unless
he “resets” the client. In most cases such a reset can be performed relatively easy, in one case it
required an intervention of a technically-educated user (restoring the backup files), and in two cases
there seemed to be no way to perform such action.

This shows that some of the Bitcoin developers seem to still ignore the malleability problem,
despite of the fact that over 8 months have passed since the infamous MtGox statement.

The second part (contained in Section 5) of this paper concerns the “Direction 2”. We provide
a general technique for transforming a Bitcoin contract that is vulnerable to the malleability attacks
(but secure otherwise), into a Bitcoin contract that is secure against such attacks. Our method covers
all known to us cases of such contracts, in particular, those listed on the “Contracts” page of the
Bitcoin Wiki [19], and the lottery protocol of [5]. It can also be applied to [3], what gives the first fair
Two-Party Computation Protocol (with financial consequences) for any functionality whose fairness
is guaranteed by the Bitcoin deposits, and which, unlike the original protocol of [3] can be used on
the current version of Bitcoin4.

4 The protocol of [3] was secure only under the assumption that the Bitcoin is modified to prevent the mal-
leability attacks.
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Related work. Some of the related work was already described in the previous sections. The idea
of using Bitcoin to guarantee fairness in the multiparty protocols and to force the users to respect the
outcome of the computation was proposed independently in [4,3] and in [6] (and implicitly in [5]),
and was also studied in [7]. The protocols of [4] and [5] work only for specific functionalities (i.e. are
not generic), and [5] is vulnerable to the malleability attack. The protocols of [3,6] are generic, but
are insecure against the malleability attack. Also the protocol of [7] seems to be insecure against
such attacks.

1.3 Ethical issues

We realize that performing the malleability attacks against the Bitcoin can raise questions about the
ethical aspects of our work. We would like to stress that we were only attacking transactions that
were issued by ourselves (and we never tried to maul transactions coming from third parties). It is
also clear that performing such attacks cannot be a threat to stability of the whole Bitcoin system,
since, as reported by [13] Bitcoin remained secure even against attacks on a much higher scale
([13] registered 25,752 individual malleability attacks involving 286,076 bitcoins just on two days
of February 2014).

Let us also note that even before we started our work we could safely assume that none of the
popular Bitcoin clients is vulnerable to the malleability attacks to the extent that would allow mali-
cious users to steal money, as it is practically certain that any such weakness would be immediately
exploited by malicious users. In fact, as argued in [13] such malicious attempts were probably behind
the large number of malleability attacks immediately after the MtGox collapse. In other words: the
experiments that we performed were almost certainly performed by several hackers before us. We
believe that therefore making these results public is in the interest of the whole Bitcoin community.

2 Bitcoin description
We assume reader’s familiarity with the basic principles of Bitcoin. For general description of Bit-
coin, see e.g. [17,20,4]. For the description of non-standard transaction scripts, see [19,4,3]. Let us
only briefly recall that the Bitcoin currency system consists of addresses and transactions between
them. An address is simply a public key pk (technically an address is a hash of pk ). We will fre-
quently denote key pairs using the capital letters (e.g. A). We will also use the following convention:
ifA = (sk , pk) then sigA(m) denotes a signature on a messagem computed with sk and verA(m,σ)
denotes the result (true or false) of the verification of a signature σ on message m with respect to
the public key pk .

Each Bitcoin transaction can have multiple inputs and outputs. Inputs of a transaction Tx are
listed as triples (y1, a1, σ1), . . . , (yn, an, σn), where each yi is a hash of some previous transaction
Tyi , ai is an index of the output of Tyi (we say that Tx redeems the ai-th output of Tyi ) and σi
is called an input-script. The outputs of a transaction are presented as a list of pairs (v1, π1), . . . ,
(vm, πm), where each vi specifies some amount of coins (called the value of the i-th output of
Tx) and πi is an output-script. A transaction can also have a time-lock t, meaning that it is valid
only if time t is reached. Hence, altogether transaction’s most general form is: Tx = ((y1, a1, σ1),
. . . , (yn, an, σn), (v1, π1), . . . , (vm, πm), t). The body of Tx5 is equal to Tx without the input-scripts,
i.e.: ((y1, a1), . . . , (yn, an), (v1, π1), . . . , (vm, πm), t), and denoted by [Tx].

One of the most useful properties of Bitcoin is that the users have flexibility in defining the
condition on how the transaction Tx can be redeemed. This is achieved by the input- and the output-
scripts. One can think of an output-script as a description of a function whose output is Boolean. A

5 In the original Bitcoin documentation this is called “simplified Tx”
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transaction Tx defined above is valid if for every i = 1, . . . , n we have that π′
i([Tx], σi)

6 evaluates
to true, where π′

i is the output-script corresponding to the ai-th output of Tyi
. Another conditions

that need to be satisfied are that the time t has already passed, v1 + · · · + vm ≤ v′1 + · · · + v′n
where each v′i is the value of the ai-th output of Tyi and each of these outputs has not been already
spent. The scripts are written in the Bitcoin scripting language. Following [4] we will present the
transactions as boxes. The redeeming of transactions will be indicated with arrows (cf. e.g. Fig. 3).
The transactions where the input script is a signature, and the output script is a verification algorithm
are the most common type of transactions and are called standard transactions. The address against
which the verification is done will be called a recipient of this transaction.

We use the security model defined in [4]. In particular, we assume that each party can access the
current contents of the block chain, and post messages on it. Let ∆ be the is maximal possible delay
between broadcasting the transaction and including it in the block chain.

3 Experiments

The implementation of the malleability attack. In order to perform malleability attacks we have
implemented a special program called adversary (using the bitcoinj [2] library). This program is
connected as a peer to the Bitcoin network and listens for transactions sending bitcoins to a particular
address Addr 7 owned by us. Whenever such a transaction is received by the program, it mauls the
transaction by changing (r, s) into (r,N − s) in the ECDSA signature (cf. footnote 2 on Page 2) and
broadcasts the modified version of the transaction.

The effectiveness of the attack is measured by the percent of cases in which the mauled trans-
action becomes confirmed and the original one invalidated. It depends on the fraction of the net-
work (and hence miners), which receives the mauled transaction before the original one. In order
to achieve a high effectiveness we need to push the modified transaction to the whole peer-to-peer
network as fast as possible. Therefore, the adversary connects to many more peers than a typical
Bitcoin client, more precisely it maintains on average 1000 connections8. Moreover, it connects di-
rectly to some nodes, which are known to be maintained by the mining pools9 and sends the mauled
transaction to them in the first place.

Effectiveness analysis In order to measure the effectiveness of our attack we set up another machine
called victim, which makes hundreds of transactions sending bitcoins to the address Addr . More
concretely we measured the effectiveness of mauling transactions under 3 different circumstances:

A) The IP address of a victim is not known to the adversary.
B) The IP address of a victim is known to the adversary. In this case the adversary can connect

directly to the victim, what allows him to discover transactions broadcast by the victim much
faster. In our experiments both machines — adversary and victim were located in the same local
network, which in some cases can be possible also in real life (a motivated adversary can connect
to the local network used by the victim). Our experiments showed that connecting directly to the
victim greatly increases the effectiveness of the attack.

6 Technically in Bitcoin [Tx] is not directly passed as an argument to π′
i. We adopt this convention to make the

exposition clearer.
7 In our experiments we used addresses 13eb7BFXgHeXfxrdDev1ehrBSGVPG6obu8 and
115g32FHp77hQpuuWpw8j8RYKPvxD1AXyP.

8 Typical Bitcoin client maintains about 8 connections.
9 More precisely it connects to the nodes maintained by mining pools GHash.IO and Eligius.
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C) The victim is aware of the malleability problem and tries to protect against it by broadcasting
her transactions on a higher number of connections. In our experiment the victim was connected
to 100 peers on the network and her IP address was not known to the adversary.

The results of our experiments are presented on Fig. 1. The effectiveness depends on the nodes to
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Fig. 1. Effectiveness of the attack under different circumstances.

which the victim is connected, so after each transaction she drops all her connections and establishes
new ones. Moreover, the effectiveness depends on the distribution of mined blocks among miners
in the testing period, so experiments were performed over longer periods of time (e.g. 24 hours).
In order to exclude the influence of the factors like physical proximity of adversary and victim (in
experiments A and C) we performed part of them with victim and adversary running on machines
far away from each other.

Clients testing. In order to determine the significance of the malleability problem for individual
Bitcoin users, we decided to test how the most popular Bitcoin wallets behave when a transaction is
mauled. We have tested 14 Bitcoin wallets listed in [9]. In every test we performed several Bitcoin
transfers from the wallet to Addr. During the tests the adversary was trying to maul every transaction
addressed to this address.

We observed that (1) most of the clients determine whether the transaction is confirmed by
looking for a transaction with a matching hash in the block chain, and (2) the clients are likely to
receive from the network the modified transaction and therefore list in the transaction history either
the original transaction or the modified one or both. This can lead to unpredictable behavior of the
wallet of many types, in most cases being hard to precisely describe. In Table 1 we present the results
of our tests. In a nutshell, we have observed the following types of behavior of the clients:

(a) the wallet incorrectly computes the balance,
(b) the wallet is unable to make an outgoing transaction because it assumes that some transaction

will be confirmed in the future (which in fact will never happen),
(c) the application crashes.

Note that if the client refuses to make an outgoing transaction and it is not possible to remove
the troublesome transaction from the history, the user will be unable to spend his bitcoins forever.
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Moreover, because of the “giving change” procedure, an attack against a single transaction can
potentially make all the money in the wallet unspendable (cf. the second scenario on Page 2).

Going more into the details: Bitcoin Core and Xapo appear to handle the malleability problem
correctly. For example Bitcoin Core detects the malleability attack and marks it as “double spending”
(indicating it with an exclamation mark). Green Address and Armory display incorrect balances
(however, when it comes to allowing a user to make a transaction, they seem to take into account
the real balance). Blockchain.info, Coinkite, Coinbase, Electrum, MultiBit, Bitcoin Wallet, and KnC
Wallet may get stuck waiting for the confirmation of the transaction, which will never be confirmed
and hence prevent the user from creating correctly the next transaction. Fortunately, these clients
either give the user an option to “synchronize the list of transactions with block chain” or they do it
automatically after some time, which makes the problem disappear. In Hive we were able the obtain
the effect of “resetting” the transaction list only by a manual action (which may be non-trivial for a
non-technically educated user). The problem is much more severe in case of BitGo and Mycelium,
which also display the troublesome transaction, but there appears to be no way to reset the list. We
note that, since BitGo is a web-client, the wrong transaction can be removed by the administrator.10

Wallet name Type (a) (b) (c) when the problem disappears
Bitcoin Core Desktop -

Xapo Web -
Armory Desktop 8 never

Green Address Desktop 8 never
Blockchain.info Web 8 8 after six blocks without confirmation

Coinkite Web 8 8 after several blocks without confirma-
tion

Coinbase Web 8 8 after several hours
Electrum Desktop 8 8 after application reset
MultiBit Desktop 8 8 after “Reset block chain and transac-

tions” procedure
Bitcoin Wallet Mobile 8 8 after “Reset block chain” procedure

KnC Wallet Mobile 8 8 8 after “Wallet reset” procedure
Hive Desktop 8 8 8 after restoring the wallet from backup

BitGo Web 8 8 never
Mycelium Mobile 8 8 never

Table 1. The results of testing 14 Bitcoin wallets listed on [9] against malleability attack. The “X” sign means
that the client (a) incorrectly computes the balance, (b) refuses to make an outgoing transaction despite the
available funds or (c) crashes. All the tests took place in October 2014 and hence may not correspond to the
current software version. Value never in the last column means that we could not figure out a way to solve the
problem and it did not disappear on its own after a few days.

4 Malleability in Bitcoin Contracts

As shown in the earlier sections malleability of Bitcoin transactions can pose a problem to users if
Bitcoin clients or services they are using have bugs in their implementation. But when these bugs
are fixed then there should be no problems or dangers in typical usage of Bitcoin. Unfortunately
malleability is a bigger problem for the security of the Bitcoin contracts. In this section we will

10 In fact, the BitGo administrators reacted to our experiments by contacting us directly.
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Fig. 2. Different behavior of clients during malleability attacks: (a) BitGo, (b) Blockchain.info., (c) Hive, and
(d) Armory.

describe a (known) malleability attack on a protocol for a deposit. Later we will also identify other
protocols that are vulnerable to the malleability attack.

4.1 The deposit protocol

The Deposit protocol [19] is executed between parties A and B. To remain consistent with the rest of
this paper we describe it here using the notation from [4,3] (cf. Section 2). The idea of this protocol
is to allow A to create a financial deposit worth d B for some period of time. A has to be sure that
after time t she will get her money back and B has to be sure that A will not be able to claim her
money earlier. One of the possible applications of this protocol is the scenario when B is a server
and A is a user that wants to open an account on the server B. In this case B wants to be sure that A is
a human and not a bot that creates the accounts automatically. To assure that, B forces A to create a
small deposit for some time. For an honest user this should not be a big problem, because the deposit
is small and she will get this money back. On the other hand it makes it expensive to create many
fake accounts (for some malicious purposes), because the cumulative value of the deposits would
grow huge.

We will now describe the deposit protocol in an informal way. The main idea of this protocol is
fairly simple: A “deposits” her money using a transaction Deposit that can be spent only using the
signatures of both A and B. To be sure that this money will go back to her she creates a transaction
Fuse that spends Deposit . This transaction needs to be signed by B, and hence A asks B to sign it,
and only after A receives this signature she posts Deposit on the block chain. In order to prevent A
from claiming her money too early Fuse contains a timelock t. In more detail the protocol looks as
follows:
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1. At the beginning A and B exchange their public keys used for signing Bitcoin transactions and
they agree on the deposit size d and time t at which the deposit will be freed.

2. Then A creates a transaction Deposit of value d B, but she does not broadcast it. This transaction
is constructed in such a way that to spend it someone has to include both signatures of A and B.

3. Afterwards A creates the transaction Fuse that has a time lock t, spends the transaction Deposit
and sends the money back to her. This transaction is also not yet broadcast.

4. Then A sends the transaction Fuse to B, he signs it and sends back to A.
5. Only then A sends the transaction Deposit to the block chain.
6. After time t she sends the transaction Fuse to get the deposit back.

The graph of transactions in the Simple deposit protocol is presented on Fig 3. The security proper-

Deposit(in: T )
in-script: sigA([Deposit ])

out-script(body , σ1, σ2):
verA(body , σ1) ∧ verB(body , σ2)
val: dB

Fuse(in: Deposit)

in-script: sigA([Fuse]), sigB([Fuse])
out-script(body , σ): verA(body , σ)
val: dB
tlock: t

dB dB

dB

Fig. 3. The Deposit protocol (vulnerable to malleability) from [19].

ties that one would expect from this protocol are as follows:

(a) A is not able to get her deposit back before the time t (assuming that B follows the protocol).
(b) A will not lose her deposit, i.e. she will get dB back before the time (t+∆) (where ∆ denotes

the maximum latency between broadcasting transaction and its confirmation).

It is easy to see that (a) holds, since there is no way Deposit can be spent before time t (as it requires
B’s signature to be spent). One would be tempted to say that also (b) holds, since A can always claim
her money back by posting Fuse on the block chain. Unfortunately, it turns out that this argument
strongly relies on the fact that Deposit was posted on the block chain exactly in the same version
as the one that was used to create the Fuse transaction. Hence, if the adversary mauls Deposit and
posts some Deposit ′ (syntactically different, but semantically equivalent to Deposit) then the Fuse
transaction will not be able to spend it (as it expects its input to have TXID equal to H(Deposit),
not H(Deposit ′)).

4.2 Other protocols vulnerable to the malleability attack

In this section we will list other known Bitcoin contracts that are vulnerable to the malleability attack.
The problem with all of them is that they are creating a transaction spending another transaction
before the latter is included in the block chain. Each of this protocols can be made resistant to
malleability using our technique described in the next section.

– “Example 5: Trading across chains” from [19]11

11 The malleability problem occurs in Step 3 when Party A generates Tx2 (the contract) which spends Tx1, and
then asks B to sign it and send it back. This happens before Tx1 is included in the block chain and hence if
later the attacker succeeds in posting a mauled version Tx1′ of Tx1 on the block chain, then the transaction
Tx2 becomes invalid.
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– “Example 7: Rapidly-adjusted (micro)payments to a pre-determined party” from [19]12

– Back and Bentov’s lottery protocol [5]13

– Simultaneous Bitcoin-based timed commitment scheme protocol from [3]14

5 Our technique

In this section we will show how to fix the Deposit protocol to make it resistant to malleability. This
technique can be used also to other protocols, e.g. those listed in section 4.2. Recall that the reason
why the protocols from Sections 4.1 and 4.2 were vulnerable to the malleability attacks was that
one party, say A, had to obtain a signature of the other party (B) on a transaction T1, whose input
was a transaction T0, and this had to happen before T0 was posted on the block chain (in case of the
Deposit protocol T0 and T1 were the Deposit and the Fuse transactions, resp.). Our main idea is
based on the observation that, using the properties of the Bitcoin scripting language, we can modify
this step by making T0 spendable not by using the B’s signature, but by providing a preimage s of
some value h under a hash function H (where H can be, e.g., the SHA256 hash function available
in the Bitcoin scripting language)15. In other words, the T0’s spending condition

out-script(body , . . . , σ): · · · ∧ verB(body , σ)

(cf. the Deposit protocol in Fig. 3) would be replaced by

out-script(body , . . . , x): · · · ∧H(x) = h,

where h = H(s) is communicated by B to A, and s is chosen by B at random. This would allow
A to spend T0 no matter how it is mauled by the adversary, provided that A learns s. At the first
sight this solution makes little sense, since there is no way in which B can be forced to send s to
A (obviously in every protocol considered above s would need to be sent to A some time after T0
appears on the block chain, as otherwise a malicious A could spend T0 immediately). Fortunately,
it turns out that this problem can be fixed by adding one more element to the protocol. Namely, we
can use the Bitcoin-based timed commitment scheme from [4] which is a protocol that does exactly
what we need here: it allows one party, called the Committer (in our case: B) to commit to a string
s by sending h = H(s) to the Recipient (here: A). Later, B can open the commitment by sending s
to A (before this happens s is secret to A). The special property of this commitment scheme is that
the users can specify a time t until which B has to open the commitment. If he does not do it by
this time, then he is forced to pay a fine (in bitcoins) to A. As shown in [4], the Bitcoin-based timed
commitment scheme is secure even against the malleability attacks. For completeness we present
this protocol in more detail in the next section.
12 The malleability problem is visible in Step 3, where the refund transaction T2 is created. This transaction

depends on the transaction T1 that is not included in the block chain at the time when both parties sign it (in
Step 3 and 4).

13 The problem occurs in Steps 4 and 7, where the “refund bet” and “refund reveal” transactions are signed
before theirs input transactions “bet” and “reveal” are broadcast.

14 The problem is visible in Step 2 of the Commit phase of this protocol (the FuseA and FuseB transactions
are created before their input transaction Commit appears on the block chain).

15 Such transactions are called hash locked in the Bitcoin literature. Notice that having an output script, which
requires only preimages and no signatures is not secure, because anyone who notices in the network a trans-
action trying to redeem such output script learns the preimages and can try to redeem this output script on
his own. In our case the output script of the transaction T0 requires also a signature of A, but we omit it (. . .)
to simplify the exposition.
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5.1 Bitcoin-based timed commitment scheme

Commit(in: T )
in-script: sigB([Commit ])

out-script(body, σ1, σ2, x):
(verB(body, σ1) ∧H(x) = h) ∨
(verB(body, σ1) ∧ verA(body, σ2))
val: dB

Open(in: Commit)

in-script: sigB([Open]),⊥, s
out-script(body, σ):
verB(body, σ)
val: dB

Fuse(in: Commit)

in-script:
sigB([Fuse]), sigA([Fuse]),⊥
out-script(body, σ): verA(body, σ)
val: dB
tlock: t

dBdB

dB

dBdB

Pre-conditions:

1. The protocol is being executed between the Committer B holding the key pair B and the Recipient A
holding the key pair A.

2. The Committer knows the secret string s.
3. The block chain contains an unredeemed transaction T with value dB, which can be redeemed with the

key B.

The CS.Commit(B,A, d, t, s) phase:

1. The Committer computes h = H(s) and broadcasts the transaction Commit . This obviously means that
he reveals h, as it is a part of the transaction Commit .

2. The Committer waits until the transaction Commit is confirmed. Then, he creates a body of the transaction
Fuse , signs it and sends the signature to the Recipient.

3. If the Recipient does not receive the signature or the signature or transaction Commit are incorrect then
he quits the protocol.

The CS.Open(B,A, d, t, s) phase:

4. Not later than at the time (t−∆) the Committer broadcasts the transaction Open , what reveals the secret s.
5. If within time t the transaction Open does not appear on the block chain then the Recipient broadcasts

the transaction Fuse to gain dB (or learn the secret s if the Committer sends the transaction Open in the
meantime and it is included in the block chain).

Fig. 4. The CS protocol from [4]. The scripts’ arguments, which are omitted are denoted by ⊥.

The Bitcoin-based timed commitment scheme protocol (CS) is being executed between the Commit-
ter B and the Recipient A. During the commitment phase the Committer commits himself to some
string s by revealing its hash h = H(s). Moreover the parties agree on a moment of time t until
which the Committer should open the commitment, i.e. reveal the secret value s. The protocol is
constructed in such a way that if the Committer does not open the commitment until time t, then
the agreed amount of dB is transferred from the Committer to the Recipient. More precisely, at the
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beginning of the protocol the Committer makes a deposit of dB, which is returned to him if he opens
the commitment before time t or taken by the Recipient otherwise.

The graph of transactions and the full description of the CS protocol is presented on Fig. 4.
The main idea is that if the Committer is honest then only the transactions Commit and Open will
be used (to commit to s and to open s respectively). If, however, the Committer refuses to open
his commitment, then the Recipient will post the Fuse transaction on the block chain and claim
B’s deposit. Observe that Fuse is time-locked and therefore a malicious recipient cannot claim the
money before the time t (and after time t he can do it only if B did not open the commitment). The
reader may refer to [4] for more details. Note that even if the transaction Commit is maliciously
changed before being included in the block chain, the protocol still succeeds because the transaction
Fuse is created after Commit is included in the block chain, so it always contains the correct hash
of Commit . Therefore, the CS protocol is resistant to the transaction malleability. The properties of
the CS protocol are as follows:

(a) The Recipient has no information about the secret s before the Committer broadcasts the trans-
action Fuse (this property is called hiding).

(b) The Committer cannot open his commitment in a different way than revealing his secret s (this
property is called binding).

(c) The honest Committer will never lose his deposit, i.e. he will receive it back not later than at the
time t.

(d) If the Committer does not reveal his secret s before the time (t + ∆) then the Recipient will
receive dB of compensation.

5.2 The details of our method

We now present in more detail our solution of the malleability problem in Bitcoin contracts that was
already sketched at the beginning of Section 5. It can be used in all of the Bitcoin contracts that are
vulnerable to the malleability attacks that we are aware of. In this paper we show how to apply it to
the Deposit protocol (described in Section 4.1).

The main idea of our solution is to use the CS protocol instead of standard Fuse transaction.
More precisely at the beginning of the protocol B samples a random secret s and commits himself
to it using the Commit phase of the CS protocol. Now A knows that B will have to reveal his secret
(i.e. the value s s.t. H(s) = h) before the time t. So A can create a Deposit transaction in such a
way that to spend it she has to provide her signature and the value s. That means that after the time
t either B will reveal the value s and A will be able to spend the transaction Deposit or A will get
the deposit of B from the CS protocol. Such a modified protocol is denoted NewDeposit. Its graph
of transactions and its full description is presented on Fig. 5.

The properties of the NewDeposit protocol are as follows (all of them hold even against the
malleability attacks):

(a) A is not able to get her deposit back before the time (t−∆).
(b) The honest A will not lose her deposit, i.e. she will get dB back before the time (t+ 2∆).
(c) Additionally the honest B will not lose his deposit, i.e. he will get it back before the time t.

The proof of the above properties is straightforward and it is omitted because of the lack of space.
We note that this protocol may not be well-suited for the practical applications, as it requires the
server to make a deposit. Nevertheless, it is a very good illustration of our technique, that is generic
and has several other applications.
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CS(B,A, d, t, s)

Deposit(in: T )
in-script: sigA([Deposit ])

out-script(body , σ, x):
verA(body , σ) ∧H(x) = h
val: dB

Fuse(in: Deposit)

in-script: sigA([Fuse]), s
out-script(body , σ): verA(body , σ)
val: dB

dB dB

dB

Pre-conditions:
1. A holds the key pair A and B holds the key pair B.

The commitment phase:
1. B samples a random secret s.
2. The parties execute the CS.Commit(B,A, d, t, s) protocol.
3. A creates the Deposit transaction using the value h from the transaction

CS(B,A, d, t, s).Commit and broadcasts it.

The opening phase:
4. B opens the commitment revealing s at the time (t−∆).
5. A learns the value of s and broadcasts the Fuse transaction.
6. If B has not opened the commitment until time t then A broadcasts the transaction

CS(B,A, d, t, s).Fuse to gain dB (or learn the value s if the Committer sends the transaction
Open in the meantime and it is included in the block chain; in that case A may just broadcast
the Fuse transaction to get her deposit back).

Fig. 5. The solution of the deposit problem resistant to malleability. CS(B,A, d, t, r) denotes the transactions
in the appropriate execution of the CS protocol.
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