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Abstract. Consumers are often willing to contribute their personal data
for analytics projects that may create new insights into societal problems.
However, consumers also have justified privacy concerns about the release
of their data.
We study the trade-off between privacy concerns related to data release
and the incentives to contribute to the estimation of a population average
of a private attribute. Consumers may decide whether to participate in
the analytics project, and what level of data precision they are willing to
provide. We show that setting a minimum precision level for participating
users leads to a strict improvement of the estimation.
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1 Introduction

Personal data has been heralded as the “New Oil” of the 21st Century [1]. The
trend to economically utilize consumer data is facilitated by the growing impor-
tance and popularity of cloud computing services and social network sites.

On the one hand, the newly-won abundance of data allows for rigorous an-
alytic treatment of many complex challenges related to social dynamics, public
health considerations, market research, and political decision-making [2]. Many
analytic results that are based on individuals’ personal data can be interpreted
as public goods with societal importance and consumers are willing to contribute
their personal data for the purpose of creating new insights into societal prob-
lems. On the other hand, there are justified privacy concerns about the release
of personal data, which may be used (or abused) for unsolicited advertisements,
or social and economic discrimination (e.g., [3–5]). Individuals may also perceive
the release and use of their data as an intrusion of their personal sphere [6, 7],
or as a violation of their dignity [8, 9].

Understanding the trade-off between privacy, the quality of data analysis
results, and willingness-to-participate in such projects is of current and growing
importance [10]. Our research addresses this problem area. More precisely, we
are investigating individuals’ incentives to participate in data analysis projects
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when they have (perceived or actual) privacy cost associated with their data
release, but also derive (perceived or actual) benefits from the analysis’ results.

Our research models, for example, a situation in which data about individuals
is collected in a database (e.g., consumer data or clinical data). Control over the
utilization of the data takes two forms: 1) individuals can authorize the access
to their data at a self-chosen level of precision, and 2) individuals can decide
whether they want to participate (or not), thereby authorizing (or declining) the
release of their data irrespective of the level of precision. We further investigate
the situation where the research analyst has flexibility to adjust requirements for
data precision with the objectives that individuals are still willing to contribute
to the project, and that the quality of the estimation improves.

We follow a game-theoretical approach to investigate this trade-off scenario.
We conduct a rigorous analysis and derive concrete results about the precision of
contributions, the quality of the population estimate, and the overall willingness
to contribute to the project.

This paper is structured as follows. We review related work in Section 2. In
Section 3, we develop and describe a canonical case of our model with homoge-
neous agents. We conduct our analysis in Section 4, and offer concluding remarks
in Section 5.

2 Related Work

Research on the optimal design of experiments assumes that already the stage
of data collection can be influenced by the analyst in order to improve the learn-
ing of a linear model [11,12]. In this paper, we allow the analyst to require data
contributions at a certain level of precision to improve the computation of a pop-
ulation estimate, which is a related concept. Optimal design of experiments has
been studied from the perspective of incentives [13], or with the scope of obtain-
ing an unbiased estimator [14]. We propose to improve the design of experiments
focusing on the privacy concerns of the agents.

Privacy-preserving techniques in the context of data analytics have a long
history. Some recent papers propose new approaches, which allow users to pro-
tect their privacy selling aggregates of their data [15, 16]. The more classical
framework of ε-differential privacy [17, 18], assumes that data are perturbed af-
ter an analysis has been conducted on unmodified inputs. That is, the analyst
is considered trustworthy. In this framework, researchers have also studied the
role of incentives [19–21]. Our work differs, as we assume agents to be releas-
ing their data independently, and an untrusted data analyst which motivates
perturbations of data before submission. The idea of affecting the level of pre-
cision of released personal data, adding noise in advance of data analysis has
been studied in the context of privacy-preserving data-mining (see, e.g., [22,23])
and specific application scenarios such as building decision trees [24], cluster-
ing [25], and association rule mining [26]. From a mechanism design perspective,
scenarios have been studied where survey subjects are assumed to potentially
misreport their private values [27, 28], however, these behaviors are not studied
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in the context of a non-cooperative scenario. A strategic approach is followed
in [29], where an analyst performs a linear regression based on users’ perturbed
data (our starting point is a simplified version of this model). We continue this
line of research by studying the benefits of restricting potential perturbation
on the population estimate accuracy, and the incentives for participation in a
game-theoretic framework.

Our research is also relevant to the context of the provisioning of public
goods [30]. Our results show a new way of increasing the public good provision by
restricting the agents’ possible actions, as opposed to using monetary incentives.

3 Model Description

3.1 The Linear Model and the Estimation

Consider a set of n agents, denoted by N = {1, . . . , n}. Each agent i ∈ N is
associated with a private variable yi ∈ R which contains sensitive information.
We suppose there exists yM ∈ R, s.t., the private variables are of the form

yi = yM + εi, ∀i ∈ N, (1)

where εi are i.i.d., zero-mean random variables with finite variance σ2 < ∞,
which capture the inherent noise.

An analyst wishes to observe the private variables yi and to estimate yM
(the mean of the yi’s). The agents, however, motivated by privacy concerns,
do not allow the access to the actual values of their private variables, but to
a perturbed value with added excess noise. More specifically, for each agent
i ∈ N the perturbed variable is given by ỹi = yi + zi, where zi is a zero-mean
random variable with variance σ2

i chosen by her. We assume that the {zi}i∈N are
independent and are also independent of the inherent noise variables {εi}i∈N .
The aggregate variance of the perturbed variable ỹi is σ2 + σ2

i . We define

λi = 1/(σ2 + σ2
i ) ∈ [0, 1/σ2], ∀i ∈ N,

the precision of the perturbed variables ỹi, i.e., the inverse of the aggregate
variance. To simplify, we will assume that each agent chooses a level of precision
λi ∈ [0, 1/σ2] (rather than its excess variance σ2

i , as both are clearly equivalent,
or even a more “user friendly” precision level normalized in [0, 100]). If agent
i ∈ N has very high privacy concerns, she can choose a precision λi = 0. In our
model, this corresponds to adding noise of infinite variance or, equivalently, this
represents the fact that the agent can choose not to participate (i.e., not to allow
the access to her data). Define λ = [λi]i∈N the vector of the precisions.

The analyst has access to the perturbed variable ỹi as well as its precision
λi, for each i ∈ N . Then, we assume that the analyst estimates the mean as

ŷM (λ) =

∑
i∈N λiỹi∑
i∈N λi

, (2)
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where observations with smaller variance receive a larger weight. This estimator
is the standard generalized least square estimator. The estimator is unbiased,
i.e., E[ŷM ] = yM , and has variance

σ2
M (λ) = E[(ŷM (λ)− yM )2] =

1∑
i∈N λi

∈ [σ2/n,+∞]. (3)

Observe that, when λi = 0 for each i ∈ N , the variance (3) is infinite. This
corresponds to the situation in which no agent decided to participate and then
the analyst cannot estimate yM . On the opposite end, when λi = 1/σ2 for each
i ∈ N , the analyst estimates yM with variance σ2/n, resulting only from the
inherent noise. This corresponds to the situation in which each agent is giving
data with maximum precision, i.e., no agent is perturbing her private variable.
The set of precision vectors for which the estimator has a finite variance is
[0, 1/σ2]n \ {(0, . . . , 0)}.

3.2 The Game Γ without Minimal Precision Level

We next describe the interaction between the agents that results in their choices
of precision levels. We assume that each agent i ∈ N wishes to minimize a cost
function Ji : Rn → R̄, s.t., for each λ ∈ [0, 1/σ2]n,

Ji(λ) = cλki + σ2
M (λ), (4)

with c > 0 and k ≥ 2. The first component is the privacy cost : cλki is the cost
that agent i incurs on account of the privacy violation sustained by revealing the
perturbed variable. We assume it to be monomial and depending only on the
precision λi, hence it is (strictly) convex. The second component, given by the
variance of the estimation σ2

M (λ), is the estimation cost : it captures the cost of
an inaccurate estimation of the mean. This cost translates the idea that agents
benefit from an accurate estimate of the population average yM . In that sense,
the accuracy of the estimate can be seen as a public good to which each agent
contributes by its choice of precision λi.

To describe the strategic interaction between the agents, we define the game
Γ =

〈
N, [0, 1/σ2]n, (Ji)i∈N

〉
with set of agents N , strategy space [0, 1/σ2] for

each agent i ∈ N and cost function Ji given by (4).

3.3 The Game Γ (η) with Minimum Precision Level η

As we shall see (Section 4.1), the game Γ has a unique Nash equilibrium λ∗(n)
for which the estimation cost σ2

M (λ∗(n)) is larger than the optimal cost σ2/n
due to the excess noise added by agents to protect their privacy. In this paper,
we investigate a novel way in which the analyst can mitigate the effect of agents’
privacy concerns and to improve the accuracy of the estimation obtained. Specif-
ically, we propose to let the analyst fix a minimum precision level η ∈ [0, 1/σ2],
which is equivalent to fixing a maximum variance for the noise agents can add
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to perturb their data. Obviously, it is not possible to force agents to reveal their
data with a given precision (otherwise, the estimation problem would be trivial).
Accordingly, we still assume that agents can choose not to participate, choosing
a precision level zero. This idea of imposing a minimum precision level allows
the analyst to improve the estimation using an adjustment of the initial scheme.

In the variant, we assume that agents are informed of the minimum precision
level η and choose their precision λi in the range imposed by the analyst or
decide not to participate, i.e., choose their precision in {0}∪ [η, 1/σ2]. To analyze
this variant, we define a modified game Γ (η) =

〈
N,
[
{0} ∪ [η, 1/σ2]

]n
, (Ji)i∈N

〉
(where the cost function Ji is still given by (4)), which is identical to Γ except
for the restricted strategy space.

Observe that Γ (0) = Γ . For η > 0, the two games Γ (η) and Γ differ as in
the original one Γ , the agents can choose any precision, while in the variant
Γ (η), the participating agents have to respect a minimum precision level η. We
analyze the two games Γ and Γ (η) as complete information games between the
agents, i.e., we assume that the set of agents, the action sets (in particular, when
present, the value of the parameter η) and the costs are known by all the agents.

4 The Estimation

4.1 The Estimation in the Game Γ

We first analyze the estimation game Γ , in which the analyst allows the agents
to choose any precision level between 0 and 1/σ2. A Nash equilibrium (in pure
strategy) of this game is a strategy profile λ∗ ∈ [0, 1/σ2]n satisfying

λ∗i ∈ arg min
λi∈[0,1/σ2]

Ji(λi,λ
∗
−i), ∀i ∈ N. (5)

The game Γ with strategy space [0, 1/σ2] is a special case of the game in [29],
where the existence of a unique Nash equilibrium is established. However, our
specific assumptions allow us to characterize the equilibrium in more detail:

Theorem 1. The game Γ has a unique Nash equilibrium λ∗(n) s.t. λ∗i (n) =
λ∗(n) > 0 for each i ∈ N , where λ∗(n) is defined by

λ∗(n) =


(

1

ckn2

) 1
k+1

if
(

1

ckn2

) 1
k+1

≤ 1/σ2

1/σ2 otherwise .

(6)

Proof. Γ is a symmetric potential game, with potential function Φ : [0, 1/σ2]n →
R̄, s.t., for each λ ∈ [0, 1/σ2]n

Φ(λ) =
∑
j∈N

cλkj + σ2
M (λ). (7)

By the definition of a potential game, the set of Nash equilibria of Γ is contained
in the set of local minima of function Φ. Function Φ has a unique local minimum
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λ∗ ∈ [0, 1/σ2]n, which is also the unique Nash equilibrium of Γ . The optimum
λ∗ is such that for each i ∈ N , λ∗i satisfies the following KKT conditions

− 1

(
∑
j∈N λ

∗
j )

2
+ ckλ∗k−1i − ψ∗i + φ∗i = 0

ψ∗i λ
∗
i = 0 φ∗i (λ

∗
i − 1/σ2) = 0, ψ∗i , φ

∗
i ≥ 0.

(8)

Observe that, as a consequence of the assumption of monomial privacy cost,
λ∗i > 0 for each i ∈ N . Moreover, as Φ is a symmetric function on a symmetric
domain, the only minimum has to be symmetric, i.e., λ∗i = λ∗ for each i ∈ N .
Then, solving the system in (8), we obtain that λ∗ is given by (6). ut

Theorem 1 states that the unique equilibrium of Γ is symmetric and gives
analytically the precision λ∗(n) chosen by each agent at equilibrium. Remarkably,
we observe that, for any n, λ∗(n) > 0, i.e., no agent decides not to participate.
The equilibrium precision λ∗(n) is a function of the number of agents n (unless
n is so small that each agent provides data with maximum precision, i.e., no
agent distorts her data). From (6), we derive the properties of λ∗(n) which are
summarized in the following corollary.

Corollary 1. The equilibrium precision level λ∗(n) satisfies

(i) λ∗(n) is a non-increasing function of the number of agents, and
(ii) limn→+∞ λ∗(n) = 0.

This corollary states that the equilibrium contribution of each agent decreases
as the number of agents increases. This is a standard property in public good
problems as agents choose their equilibrium contribution such that the marginal
increase in the contribution cost equates the marginal decrease in the estimation
cost, and the marginal effect of a single agent decreases when the number of
agents increases. In the limit when n becomes very large, the contribution of
each agent tends to zero (i.e., each agents adds a variance tending to infinity).

The variance of the estimate of yM obtained by the analyst at equilibrium is

σ2
M (λ∗(n)) =

1

nλ∗(n)
. (9)

The properties of the variance of the population estimate at equilibrium, as a
function of the number of agents, are summarized in the following corollary.

Corollary 2. The equilibrium variance of the estimate of yM satisfies

(i) σ2
M (λ∗(n)) is a non-increasing function of the number of agents n, and

(ii) σ2
M (λ∗(n)) ∼n→∞ n

2
k+1−1 and limn→+∞ σ2

M (λ∗(n)) = 0.

Proof. When n1 ≥ n2 > 0, then λ∗(n1) ≤ λ∗(n2), because of Corollary 1. In
particular, there exists m > 0 s.t., for each n ≥ m, λ∗(n) =

(
1

ckn2

) 1
k+1 , and we

may write the estimation cost as

σ2
M (λ∗(n)) = c

1
k+1 k

1
k+1n

2
k+1−1.
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Then, σ2
M (λ∗(n)) ∼n→∞ n

2
k+1−1. For k > 1, this is a decreasing function which

goes to zero when n goes to infinite. This proves (ii) and (i) in the case n1 ≥
n2 ≥ m. When m ≥ n1 ≥ n2, then

σ2
M (λ∗(n1)) = n−11 σ2 ≤ n−12 σ2 ≤ σ2

M (λ∗(n2)),

and when n1 ≥ m ≥ n2, then

σ2
M (λ∗(n1)) = n−11 λ∗(n1)−1 ≤ n−12

(
1

ckn2
2

) 1
k+1

≤ n−22 σ2 = σ2
M (λ∗(n2)).

ut

Corollary 2-(i) shows that, for the analyst, it is always better to have a larger
number of agents giving data despite the fact that, when the number of agents
increases, each agent gives data with smaller precision (see Corollary 1). Part (ii)
of Corollary 2 analyzes the case for a large number of agents n. Interestingly,
when n gets large, the variance decreases at a rate smaller from the standard
1/n. In particular, if k is small, the rate of decrease can be very slow. On the
other end of the spectrum, if n is low (such that

(
1

ckn2

) 1
k+1 > 1/σ2), then at

equilibrium every agent chooses the maximum precision level, and the estimation
of yM has minimum variance equal to σ2/n.

4.2 The Estimation in the Game Γ (η)

We now move to the case where the analyst introduces a minimum precision
level η ∈ [0, 1/σ2] with the goal of improving the accuracy of the estimate. We
assume that λ∗(n) 6= 1/σ2, since in that case, the estimation is already optimal
with η = 0. A Nash equilibrium (in pure strategy) of the game Γ (η) is a strategy
profile λ∗ ∈

[
{0} ∪ [η, 1/σ2]

]n satisfying

λ∗i ∈ arg min
λi∈{0}∪[η,1/σ2]

Ji(λi,λ
∗
−i), ∀i ∈ N. (10)

In the following lemma, we state that it is possible for the analyst to improve
the estimation by setting a strictly positive minimum precision level.

Theorem 2. Given Γ with equilibrium precision level λ∗(n) 6= 1/σ2, there exists
η ∈ (λ∗(n), 1/σ2] s.t. Γ (η) has a unique Nash equilibrium λ∗(n, η) and the esti-
mation cost at equilibrium is strictly smaller, i.e., σ2

M (λ∗(n, η)) < σ2
M (λ∗(n)).

Proof. The game Γ (η) is a potential game, with potential function as in (7), but
restricted to the smaller domain

[
{0}∪ [η, 1/σ2]

]n. At first, we focus on the local
minima in [η, 1/σ2]n. When η = λ∗(n) + ε, with ε > 0, the vector η = [η]i∈N
is the only local minimum of Φ on [η, 1/σ2]n. Because of the convexity of Φ,
any deviation of agent i ∈ N to a precision level in (η, 1/σ2] would make her
cost function bigger. Moreover, if agent i ∈ N deviates to 0, her cost function
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does not become smaller if λ∗(n) ≤
(

1
cn(n−1)

) 1
k+1 − ε, and there always exists

ε > 0 s.t. this inequality holds and the corresponding η is a Nash equilibrium.
We show that there exists ε s.t. Γ (η) has unique equilibrium η. First, we state
the following lemma.

Lemma 1. Suppose that λ′ = (λ′1, . . . , λ
′
n) is a local minimum of the potential

function Φ on
[
{0}∪[η, 1/σ2]

]n, with η ∈ (λ∗(n), λ∗(n−t)], T = {i ∈ N : λ′i = 0}
and t = |T |. Then, λ′ is a local minimum on {0}t × [η, 1/σ2]n−t and it is s.t.
λ′i = λ∗(n− t) for each i ∈ N \ T .

Let ε be s.t. η = λ∗(n) + ε ≤ λ∗(n − t). Suppose that there exists a local
minimum λ′ s.t. calling T = {i ∈ N : λ′i = 0}, then t = |T | ≥ 1, i.e., the set of
agents who are at a zero precision level is nonempty. Then, because of Lemma
1, λ′i = λ∗(n− t) for each i ∈ N \T . This cannot be a Nash equilibrium. In fact,

1

(n− t)λ∗(n− t)
>

1

(n− t+ 1)λ∗(n− t)
+ cλ∗(n− t)k,

when k ≥ 2, meaning that if an agent in T deviates moving from the precision
level 0 to the precision level λ∗(n−t), she can strictly decrease her cost function.
Then, η is the only Nash equilibrium and it is s.t. σ2

M (λ∗(n, η)) = 1/(nη) <
1/(nλ∗(n)) = σ2

M (λ∗(n)). ut

Theorem 1 shows that the analyst can indeed improve the quality of the
estimation simply by setting a minimum precision level.

5 Concluding Remarks

In this paper, we investigated the problem of estimating population quantities
with privacy-sensitive agents who add noise to their data before revealing it to
the analyst. The agents choose the precision of the data they reveal to balance
their privacy cost and the benefit they derive from a more accurate population
estimate. We show that the analyst can improve the population estimate’s ac-
curacy by restricting the variance of the noise users can add while maintaining
incentive compatibility (i.e., users are still willing to give their data with limited
noise rather than dropping out). Our results posit a new way of increasing the
provision of a public good (here, the population estimate’s accuracy) beyond the
level of voluntary contributions by restricting the agents’ strategy space. This
scheme is attractive by its simplicity, as it does not involve for instance transfers
of money that are used in more classical schemes.

In this short paper, we proposed a first analysis of the model, making a
number of restrictive assumptions. However, the interesting results we obtained
make really appealing an extension of this work. In particular, we suggest three
possible lines of future research. First, our model assumes a perfectly symmetric
scenario. Understanding how our results can be extended to the heterogeneous
agent case is, in our opinion, the first possible future work. See, for example, [31]
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for a distribution of privacy valuations across data types. Second, our system
is very specific in the choice of the definition of the estimation cost and of the
privacy cost. It would be interesting to investigate how the model behaves when
assuming more abstract cost functions, to verify its applicability to more general
scenarios. Third, we assumed that the analyst can collect data from n agents at
no cost and we showed that the accuracy of the population estimate increases
with n (although each individual contributes less). However, there could be a
cost of collecting the data per agent (e.g., cost of asking for consent). A better
understanding of this factor is of high practical relevance.
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