
Hierarchical deterministic Bitcoin wallets
that tolerate key leakage

(Short paper)

Gus Gutoski1 and Douglas Stebila2

1 Perimeter Institute for Theoretical Physics, Waterloo, Canada
ggutoski@perimeterinstitute.ca

2 School of Electrical Engineering and Computer Science
and School of Mathematical Sciences

Queensland University of Technology, Brisbane, Australia
stebila@qut.edu.au

Abstract. A Bitcoin wallet is a set of private keys known to a user and
which allow that user to spend any Bitcoin associated with those keys. In
a hierarchical deterministic (HD) wallet, child private keys are generated
pseudorandomly from a master private key, and the corresponding child
public keys can be generated by anyone with knowledge of the master
public key. These wallets have several interesting applications including
Internet retail, trustless audit, and a treasurer allocating funds among
departments. A specification of HD wallets has even been accepted as
Bitcoin standard BIP32.
Unfortunately, in all existing HD wallets—including BIP32 wallets—an
attacker can easily recover the master private key given the master public
key and any child private key. This vulnerability precludes use cases such
as a combined treasurer-auditor, and some in the Bitcoin community
have suspected that this vulnerability cannot be avoided.
We propose a new HD wallet that is not subject to this vulnerability.
Our HD wallet can tolerate the leakage of up to m private keys with a
master public key size of O(m). We prove that breaking our HD wallet is
at least as hard as the so-called “one more” discrete logarithm problem.

1 Introduction

Bitcoin [10] is a popular, decentralized cryptocurrency with monetary base
worth approximately USD 5 billion as of December 2014. Each stash of Bitcoin
(technically, an unspent transaction output) is associated with a public key Q
for the Elliptic Curve Digital Signature Algorithm (ECDSA) [11]. A stash is
spent by presenting a new transaction with a valid digital signature under Q.
Under normal use, signatures are generated via knowledge of the private key d
corresponding to Q. Ownership of a stash of Bitcoin is equated with knowledge
of the associated private key.

A Bitcoin wallet is a set of private keys known to a user. A single wallet
may contain hundreds or even thousands of distinct private keys. Wallets are

often stored in a database on a user’s computer with appropriate backups to
guard against accidental loss. A typical Bitcoin user is constantly generating new,
random private keys and so frequent (and burdensome) backups are essential.

Deterministic wallets. Deterministic wallets alleviate much of the burden of
wallet maintenance by generating a pseudorandom sequence of child private keys
d1, d2, . . . from a master private key d̂ according to a formula such as

di = hash(i, d̂)

where hash(·) is a cryptographically secure hash function that is indistinguishable
from a random function and which may or may not be publicly known.

These wallets are hierarchical in that each child key di could be viewed as
a new master private key in its own right, from which a new sequence of child
private keys di,1, di,2, . . . could be generated and so on ad infinitum.

It is worth emphasizing that the entire hierarchy of private keys in the wallet
can be recovered from knowledge of d̂, making the wallet highly portable and
easy to maintain. (Some Bitcoin users derive this master private key from the
hash of a memorized password; the resulting wallet is called a brain wallet.)

The master public key property. Interestingly, the mathematics of any
discrete logarithm system—including the ECDSA scheme used in Bitcoin—allow
for deterministic wallets with the additional property that a user could create and
publish a master public key Q̂, from which anyone could compute the sequence
Q1, Q2, . . . of child public keys corresponding to the child private keys d1, d2, . . .
derived from d̂, and yet knowledge of Q̂ alone is insufficient to recover any of the
private keys d̂, d1, d2, (See Section3 for details.) We refer to this property as
the master public key property.

Deterministic wallets with the master public key property are confusingly
called hierarchical deterministic (HD) wallets in the Bitcoin community. This
label is something of a misnomer as the salient feature of HD wallets is not the
hierarchy but rather the master public key property.

Credit for this concept is typically attributed to Maxwell [9]. The first widely
available HD wallet software was the Electrum wallet, which appeared in Novem-
ber 2011 [1]. A specification of HD wallets was proposed in 2012 and subsequently
accepted as Bitcoin standard BIP32 [12].

A vulnerability in existing HD wallets. Unfortunately, all existing HD
wallets—including BIP32-compliant wallets—admit an exploit whereby an at-
tacker could easily recover the master private key d̂ given the master public key
Q̂ and any child private key di. (Again, see Section 3 for details.)

This vulnerability was known to the author of the BIP32 standard [12]. Indeed,
BIP32 compensates for this vulnerability by allowing for “hardened” child private
keys that can be compromised without also compromising the master private key.
Unfortunately, those hardened keys lack the master public key property: their
public keys cannot be generated from the master public key.

Buterin calls attention to this vulnerability in his informative article, in which
he announces open-source software that cracks BIP32 and Electrum wallets [5].
His pessimism is a challenge to the cryptography community:

[T]he obvious question is: can this [vulnerability] be fixed? The answer
seems to be no; ... If this is indeed true, then raising awareness is the
only solution, together with a change in BIP32 representation and in
clients to make it clear that master public keys and hierarchical wallets
do not mix.

Our contribution. We present a new HD wallet that eliminates this vulnera-
bility while retaining the master public key property (Section 4). For a chosen
parameter m, our HD wallet can tolerate the leakage of up to m private keys
with a master public key of size O(m) and no blow-up whatsoever in the size of
the master private key. We prove in Section 5 that breaking our HD wallet is at
least as hard as the so-called “one-more” discrete logarithm problem.

We begin in Section 2 with a survey of several previously known use cases for
HD wallets, including one—the combined treasurer-auditor—that is precluded by
the vulnerability of existing HD wallets but not by our new HD wallet. Section 3
reviews the BIP32 vulnerability in detail.

2 Use cases for HD wallets

1. Low-maintenance wallets, brain wallets. As mentioned in Section 1, a rudi-
mentary use of deterministic wallets is to allow the complete reconstruction
of any Bitcoin wallet from a single master private key. These wallets are
easier to maintain, more portable, and make brain wallets possible.

2. A web merchant receiving payment from customers. A motivating use case
suggested by Maxwell [9] and described in the BIP32 standard [12] is that of
a web merchant who generates fresh public keys for each sale. A deterministic
wallet allows the merchant to easily generate and store only the public keys
on a vulnerable online server while all the corresponding private keys are
kept safe in offline storage.
Moreover, the merchant can employ the hierarchical property of HD wallets to
store only those public keys that are needed for receiving customer payments.
This practice could enhance the merchant’s privacy by eliminating the need
to store every public key in his entire wallet on the vulnerable server.

3. Detailed, trustless audits. A user could reveal her master public key Q̂ to
third-party auditors, who could then use that key to view the full details of
every subsequent transaction using Bitcoins from the stash associated with
Q̂. Such a user is assured that her funds are safe from theft by the auditor
because the private keys associated with those funds are never revealed.
One frequently suggested use case is a large company that reveals its master
public key to regulators, thereby allowing an extremely detailed degree of
oversight with near-negligible overhead costs. Another use case is that of
a bank or online wallet service; revealing master public keys to depositors

allows the bank to prove to those depositors that their funds are safe and that
the bank is not operating a fractional reserve. Coinkite is a recent commercial
example of such an online HD wallet [3].

4. A treasurer allocating funds to departments. The treasurer of a large company
could create child key pairs for each department within the company. Depart-
ment managers are given only the child private key for their department, so
they cannot spend the funds allocated to other departments. Managers of large
departments can employ the hierarchical property of HD wallets to create
their own sub-tree of child keys and allocate funds among middle-managers
in a similar fashion, and so on down the corporate hierarchy. Meanwhile, the
treasurer, who knows the master private key, retains the full ability to move
funds into and out of the different departments. This use case is suggested
by, for example, the developers of the open-source MoneyTree HD wallet [2].

Treasurers and auditors don’t mix. An organization that simultaneously
implements the treasurer (4) and auditor (3) use cases using current HD wallets
leaves itself open a collusion between the auditor and a department manager,
allowing them to run off with all the company’s funds via the exploit mentioned
in Section 1 and detailed in Section 3.

Enabling the combined treasurer-auditor. Our HD wallet, presented in
Section 4, is the first to facilitate the combined treasurer-auditor use case. Specif-
ically, an organization with t departments is safe from a collusion between the
auditor and all department managers if it uses our HD wallet with parameter
m > t.

3 A vulnerability in BIP32 wallets

We now review the exploit in BIP32 Bitcoin HD wallets that allows an adversary
to recover the master private key given the master public key and any child
private key, thus precluding the combined treasurer-auditor use case discussed
above. (This exploit appears to be folklore knowledge in the Bitcoin community.)

The key-generation formula employed by current HD wallets can be applied
to any discrete logarithm system, such as the ECDSA used by Bitcoin. It is
convenient to present the formula in simplified form using the familiar language
of a generic additive group G of prime order p with generator P ∈ G.

Recall that a private key d in a discrete logarithm system is an element of
Zp and the public key Q ∈ G corresponding to d is easily computed via Q = dP .
Recall also that the task of recovering a private key d given only the public key
Q and the generator P is the familiar discrete logarithm problem (DLP) for G.

BIP32 child key generation. Given a master key pair (d̂, Q̂) for a BIP32-
compliant HD wallet, compute child private keys d1, d2, . . . and corresponding

public keys Q1, Q2, . . . as

di = d̂+ hash(i, Q̂) (mod p)

Qi = Q̂+ hash(i, Q̂)P

for a strong, publicly known hash function hash : Z×G→ Zp. It is easily seen
that Qi is indeed equal to diP and thus the public key corresponding to di.

By contrast with the rudimentary deterministic wallet described in Section 1,
child public keys Qi can be computed using only knowledge of i, the master
public key Q̂, and the function hash(·). It is this fact that gives rise to the master
public key feature of BIP32 HD wallets.

Exploit. Recovery of the master private key d̂ given the master public key Q̂,
any child private key di, and corresponding index i is given by the formula

d̂ = di − hash(i, Q̂) (mod p).

4 A new HD wallet that tolerates key leakage

Master key generation. Instead of one master private key, our HD wallet uses
m master private keys d̂1, . . . , d̂m for some reasonably-sized m to be determined
by the requirements of the wallet. (For example, in the combined treasurer-
auditor use case of Section 2, m must exceed the number t of departments in the
organization.) To keep the master private key size down, these master private
keys could be generated pseudorandomly with no loss of security using, say, the
rudimentary deterministic wallet described in Section 1.

The master public keys Q̂1, . . . , Q̂m corresponding to master private keys
d̂1, . . . , d̂m are given, as usual, by Q̂i = d̂iP . Whereas the master private keys
could be generated pseudorandomly to save storage, one cannot simply publish a
single “grand master” public key from which users could deduce the master public
keys Q̂1, . . . , Q̂m as otherwise one would succeed only in pushing the original
vulnerability up from child keys to master keys. Thus, these master public keys
must be stored explicitly, incurring a O(m) blow-up in public key size.

Child key generation. We now describe how child keys are derived from these
m master keys. To this end let s be some publicly known master seed. This seed
could be a universal constant such as 42—the Answer to the Ultimate Question
of Life, The Universe, and Everything. Alternately, s might depend upon the
wallet—say, a concatenation of the master public keys Q̂1, . . . , Q̂m.

In what follows the hash function hash(i, s) 7→ (α1, . . . , αm) produces an
m-tuple of integers modulo p. As usual, we assume that hash(·) is publicly known
and behaves as a random function. The ith child private key di and public key
Qi in our HD wallet are given by

di =

m∑
j=1

αj d̂j and Qi =

m∑
j=1

αjQ̂j .

It is clear that child public keys can be computed from the master public keys
Q̂1, . . . , Q̂m, so that this HD wallet has the desired master public key property.

5 Security of our HD wallet scheme

5.1 Security definitions

If a child private key di is compromised then the adversary has learned only a
random linear combination of the master private keys. Indeed, even if a master
private key d̂j is compromised then the adversary has learned only one out of
the m keys needed to generate child keys. Intuitively speaking, in either case the
breach is a linear constraint that reduces by at most one the dimension of the
space of all possible master private key combinations; it seems that the adversary
gains no useful information about any other master or child private key.

However, if m private keys are leaked then with overwhelming probability the
adversary could recover all the master private keys by solving the corresponding
linear system, in which case our HD wallet is completely broken. At best, then,
our HD wallet is secure only if fewer than m private keys are leaked.

Within this context there is a wide spectrum of possible security definitions
for an HD wallet. For example, a very strong definition of security might require
that an adversary who obtains some combination of fewer than m master and
child private keys cannot forge a signature for any uncompromised master or child
key, even under an adaptive chosen-message attack. Since there is no known proof
that the ECDSA (or finite field DSA) scheme is existentially unforgeable under
chosen message attack, it is reasonable to consider somewhat weaker definitions.

Another security definition might require that an adversary who obtains fewer
than m master and child private keys cannot recover any uncompromised master
or child private key. We suspect that a security proof for our HD wallet could
be obtained by reducing some variant of DLP to the task of breaking our HD
wallet according to this security definition. However, it is likely that the variant
of DLP in such a reduction would be new and contrived. (For a discussion of the
dangers of basing the security of a cryptosystem upon the presumed intractability
of contrived problems the reader is referred to Koblitz and Menezes [8] and
references therein.)

For the purpose of this preliminary short paper, then, we content ourselves
with a proof of security of our HD wallet against a complete break, in which an
adversary who obtains fewer than m master and child private keys is able to
recover all of the master private keys. Specifically, the problem of completely
breaking our HD wallet is formalized as follows in Problem 1.

Problem 1 (Complete break of our HD wallet).

Input: (i) Master public keys Q̂1, . . . , Q̂m, and (ii) an oracle that on input

α1, . . . , αm ∈ Zp returns k =
∑m

j=1 αj d̂j (mod p).

Restriction: The number of calls made to the oracle must be less than m.

Output: The master private keys d̂1, . . . , d̂m.

5.2 Cryptographic assumptions

We will prove that a complete break of our HD wallet is at least as hard as the
so-called one-more discrete logarithm problem (1MDLP) defined as follows.

Problem 2 (One-more discrete logarithm (1MDLP) for generator P ∈ G).

Input: (i) A challenge oracle that produces a random Qi ∈ G when queried,
and (ii) an oracle for DLP.

Restriction: Let m be the number of calls made to the challenge oracle. The
number of calls made to the DLP oracle must be less than m.

Output: The discrete logarithms of all elements Q1, . . . , Qm. That is, ele-
ments d1, . . . , dm of Zp with Qi = diP .

Although not as “natural” a problem as DLP, 1MDLP is arguably still a
natural and clean mathematics problem. 1MDLP has appeared in prior literature—
it was used, for example, by Bellare and Palacio to argue the security of the
well known GQ and Schnorr identification schemes [4]. Indeed, 1MDLP has even
been the subject of at least a bare minimum of scrutiny by the cryptographic
community—again, see Koblitz and Menezes [8].

1MDLP is obviously no harder than DLP and there is some evidence suggesting
that it is strictly easier, at least in some cases [7]. Nonetheless, it seems reasonable
to assume that if DLP is intractable then so too is 1MDLP.

A word of caution. Although it may be reasonable to assume that 1MDLP is
intractable in an asymptotic sense, it does not necessarily follow that an attacker
could not efficiently solve 1MDLP for the specific choice of parameters used in
real-world cryptosystems.

For example, the elliptic curve parameters in the secp256k1 standard used
by Bitcoin are chosen so that the best known algorithms for DLP on the elliptic
curve group take approximately 2128 steps [6]. However, it is conceivable that
1MDLP with these parameters could be solved in, say, only 264 steps.

Such a solution to 1MDLP would not necessarily imply a complete break of
our HD wallet because our security reduction is only unidirectional. Nevertheless,
it would seriously call into question the security of our HD wallet with the
secp256k1 parameters used by Bitcoin; a new security proof would be required.

5.3 Security proof

Theorem 1. A complete break of our HD wallet (Problem 1) is at least as hard
as 1MDLP (Problem 2).

Proof. Suppose we have an oracle that completely breaks our HD wallet for some
number m of master private keys. This oracle can be used to solve 1MDLP with
m queries to the challenge oracle as follows. First, query the challenge oracle m
times to get m random group elements Q̂1, . . . , Q̂m, which are passed as input
to the oracle that completely breaks our HD wallet (Problem 1).

Calls by the oracle for Problem 1 to its input oracle on input (α1, . . . , αm)
are simulated by querying the DLP oracle on α1Q̂1 + · · ·+ αmQ̂m to obtain the
required k. By assumption, the oracle for Problem 1 makes fewer than m such
calls, so our reduction obeys the restriction of Problem 2. Also by assumption,
the oracle for Problem 1 returns the master private keys d̂1, . . . , d̂m, which is a
correct solution to 1MDLP. ut
Remark 1. In Problem 1 the adversary is granted the luxury to choose the linear
combination of master private keys revealed to him. In contrast, by compromising
a child key in our HD wallet the adversary learns only a random linear combination
of master private keys. Thus, our security proof holds even against adversaries
who can somehow control the randomness used in deriving child private keys.

Acknowledgements

Research at the Perimeter Institute is supported by the Government of Canada
through Industry Canada and by the Province of Ontario through the Min-
istry of Research and Innovation. GG also acknowledges support from Cryp-
toWorks21. DS is supported by Australian Research Council (ARC) Discovery
Project DP130104304.

References

1. Electrum lightweight Bitcoin wallet. https://electrum.org/ (November 2011)
2. Moneytree. https://github.com/BitVault/money-tree, https://bitcointalk.

org/index.php?topic=296139 (2013)
3. Coinkite. https://coinkite.com (2014)
4. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of secu-

rity against impersonation under active and concurrent attacks. In: Advances in
Cryptology – CRYPTO 2002. LNCS, vol. 2442, pp. 162–177 (2002)

5. Buterin, V.: Deterministic wallets, their advantages and their understated
flaws. Bitcoin Magazine (November 2013), http://bitcoinmagazine.com/8396/
deterministic-wallets-advantages-flaw/

6. Certicom Research: SEC 2: Recommended Elliptic Curve Domain Parameters, v2.0
(2000), http://www.secg.org/

7. Koblitz, N., Menezes, A.: Another look at non-standard discrete log and Diffie–
Hellman problems. Journal of Mathematical Cryptology 2(4), 311–326 (2008)

8. Koblitz, N., Menezes, A.: Intractable problems in cryptography. In: Proceedings
of the 9th Conference on Finite Fields and Their Applications. Contemporary
Mathematics, vol. 518, pp. 279–300 (2010)

9. Maxwell, G.: Deterministic wallets. https://bitcointalk.org/index.php?topic=
19137 (June 2011)

10. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://
bitcoin.org/bitcoin.pdf

11. National Institute of Standards and Technology: FIPS-186-4: Digital Signature Stan-
dard (DSS) (July 2013), http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

186-4.pdf
12. Wuille, P.: BIP32: Hierarchical Deterministic Wallets (February 2012), https:

//github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

https://electrum.org/
https://github.com/BitVault/money-tree
https://bitcointalk.org/index.php?topic=296139
https://bitcointalk.org/index.php?topic=296139
https://coinkite.com
http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/
http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/
http://www.secg.org/
https://bitcointalk.org/index.php?topic=19137
https://bitcointalk.org/index.php?topic=19137
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	Hierarchical deterministic Bitcoin wallets that tolerate key leakage

