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Abstract. We present a novel approach to user authentication in which
biometric data related to human cognitive processes, in particular visual
search, working memory and priming effect on automatic processing, are
captured and used to identify users. Our proposed system uses a carefully
designed Cognitive Task (CT) that is presented to the user as a game,
in order to capture a “cognitive signature” of the user. Our empirical
results support the hypothesis that the captured cognitive signatures can
identify users across different platforms. Our system provides a proof-of-
concept for cognitive-based biometric authentication. We validate the
robustness of our system against impersonation attack by experienced
users, and show that it is hard to reproduce the cognitive signature by
mimicking users’ gameplay.

1 Introduction

The most widely used form of authentication is password system; that is, what
we can remember. Password systems are attractive because they do not require
any special hardware, but they are vulnerable to guessing attacks and pass-
words have the risk of being forgotten. Biometric authentication systems are
based on what we are (fingerprints, iris pattern), and are immune to being lost
or forgotten. However, traditional biometric systems require the use of special
hardwares such as scanners or cameras. More recent biometric authentication
systems are behavioral and based on what we do, including keyboard typing
rhythm, mouse dynamics or walking gait. Behavioral biometric systems measure
behavioral traits of a user to build a profile for him that will later be used to
identify the user.

We present an authentication system which captures biometric data related
to human cognitive processes and use that to build a profile for the user. Cogni-
tion refers to higher level brain functions (or mental processes) such as percep-
tion, learning, problem solving [1, 2]. Cognitive abilities of individuals are their
capacities to carry out cognitive tasks that require mental processes. Basing au-
thentication on these processes makes our approach different from behavioral
biometrics which do not attempt to invoke particular mental processes.

Our work is inspired by the reported studies on individuals differences [1]
in performing cognitive tasks. We present a cognitive task (CT) to the user
in the form of a game that will be performed by the user by interacting with



the computer, and using a mouse or a touchpad. The collected data during the
execution of the CT will be used to extract cognitive features related to visual
search ability, working memory and the effect of priming on automatic processing
of the user. Visual search refers to finding a target object in a set of objects and
is measured by the search time. Working memory allows individuals to hold
information in their memory for later processing. Features derived from these
cognitive processes in combination with other basic stimulus-response features
are used to build profiles for the users that can later identify them.

The CT is presented to the user in the form of an interactive visual search
game. The game starts by presenting a set of 25 different objects arranged in a
5×5 grid to the user. The task of the user is to find a particular target object
in the set. The user has to drag and drop the challenge object onto the match-
ing target object in the set. This is equivalent to performing a visual search
task by the user. On performing a correct search task (or correct match), the
user is rewarded with a gold coin. The user is instructed to deposit the gold
coin in a “bank”. On a correct deposit, the user is presented with another chal-
lenge object and a similar interaction follows. The features derived from these
interactions are used to construct a cognitive signature. The signatures are then
used to develop an authentication system with accuracy comparable to other
established biometric approaches. A typical behavioral biometric system such as
those based on mouse dynamics, measure behavioral traits that are inadvertent.
Systems designed to estimate cognitive features such as ours, can be augmented
to use behavioral features related to mouse dynamics to improve authentication
accuracy.

Our system is based on experiments in experimental cognitive psychology and
has been carefully designed to preserve the essential elements of the correspond-
ing experiments. Attempts have also been made to ensure that the cognitive task
presented to the user is intuitive and interesting. We performed experiments in
controlled and non-controlled (Amazon Mechanical Turk [3]) environments. The
accuracies obtained in both cases are comparable to other state-of-the-art be-
havioural biometric systems [4–7]. To evaluate security of the system we consid-
ered impersonation attack where an attacker attempts to mimic a target user’s
gameplay. Using the data collected during the target user’s gameplay, we devel-
oped a simulation of their gameplay that was later provided to the attacker for
the purpose of training. After that training phase, the attacker had to imperson-
ate the target user. We considered the attack to be successful when the attacker
was able to successfully authenticate himself as the target user.

Section 2 discusses the mental processes and the design of the game. Section
3 describes how the design invokes cognitive processes. We discuss feature collec-
tion and the user classification technique in Section 4 and 5, respectively. Section
6 provides details on experimental results and analysis. Finally, we conclude in
Section 7.



2 Cognitive Task

We present the CT to the user in the form of a web-based game. In this Section,
we first discuss cognitive processes and then the design of the CT(game). In
Section 3 we examine how the design of the game invokes these mental processes.

2.1 Mental Processes

Visual Search. Visual search is a type of cognitive task in which the user
searches through a visual field for a target [8]. Performance is generally measured
by the search time. The search time depends on multiple factors such as the
rate at which the user scans the alternatives. In a self-terminating search, the
user stops the searching process as soon as he finds the alternative he thinks is
appropriate [9, 2].
Working Memory & Information Processing Speed. Working memory
describes the ability of a human to hold and manipulate information in their
mind over short periods of time for a cognitive task such as learning or reasoning
[8]. The working memory capacity varies between individuals. The ability to
reason and solve problems requires the use of information stored in working
memory. However, this information is vulnerable to interruption and decay. Due
to this volatility, faster processing of this information is necessary for successful
completion of a cognitive task.
Automatic Processing & Priming Effect. Automatic processing, is the pro-
cessing of information that guides behavior, but without being conscious of the
process, and without interfering with other conscious activity that may be un-
derway at the same time [2]. Automatic processes can be invoked by a technique
called priming [2, 10]. A prime is a stimulus or event that influences an ongoing
action or process. Bargh et al. [10] carried out an experiment where a group of
participants were exposed to words related to the concept of elderly. The partici-
pants who were primed with the elderly concept were found walking slower than
the others. However, participants had no conscious awareness of the concept of
the elderly or of their reaction to it.

2.2 Design of the Game.

Our game provides a simple challenge-response task. In each instance of the
challenge-response, the user is given a challenge, which is an object. The user
responds by dragging the challenge object onto the matching object inside the
search set. The user then receives a gold coin as a reward and deposits it in a
bank. On a correct deposit, the user is challenged with a new object and the
game continues as before. Our goal was to invoke the three mental processes
within a minimal design space.

An image is first broken into a grid of 5×5 = 25 square cells. We refer to this
partitioned image as the search set θ, |θ |= 25. Each square is called a tile. The
game starts by presenting a random challenge tile tc at a location Ptc outside
the partitioned image. The tile, tc, is a copy of a tile tr ∈ θ. We have divided



the user’s response into two actions. (1) The user drags tc and drops it onto tr
located at position Ptr within the search set, in which case tc rests on tr and
becomes unmovable. We refer to this action as Aresp. On an incorrect match,
tc automatically moves back to position Ptc signifying a mismatch and allowing
the user to retry. (2) On a correct placement of tc on tr, the user is rewarded
with a gold coin, gc, which appears exactly at Ptr (superimposed). The user is
then instructed to deposit (drag and drop) gc in a bank (a bounded box with
the same dimensions as that of a tile) appearing at Ptc . We refer to this action
as Arew. On depositing the coin, the user is challenged with the next tile, and
the game continues as before. Therefore, one instance of this game is comprised
of the correct placement of the target tile, Aresp and correct deposit of the gold
coin, Arew (Appendix A, Figure 4).
From Conceptual Modeling to Implementation. In order to guarantee the
invocation of the aforementioned mental processes certain constraints have been
used throughout the game.
C1: At the beginning of each instance, a copy of a randomly chosen original tile
tr ∈ θ appears at Ptc as the challenge tile tc. Challenge tiles cannot be repeated.
Therefore, each of the 25 partitioned portions (original tiles) of the image must
appear only once as the challenge tile.
C2: On completing the action Aresp, tc is superimposed on tr and becomes
unmovable. At this point all the loose tiles (tiles that have not appeared in the
challenge phase till now) disappear from the grid leaving only the unmovable
ones. This allows the user to observe the current status of the game. The user
can observe the tiles that have been placed correctly till now and the remaining
empty square cells on the grid. Refer to Appendix A Figure 4(b).
C3: At the beginning of Aresp all current loose tiles in the grid are shuffled.
They randomly change their positions on the grid except for the target tile tr
and the unmovable ones. All 25 tiles are visible during Aresp. Therefore the actual
positions of the loose tiles remain unknown to the user. Refer to Appendix A
Figure 4(d).
C4: Two straight lines from Ptr to Ptc appear during the Arew action. During
this action if the gold coin touches any one of the straight lines, its color changes
from green to red, without hampering the current movement (Appendix A Figure
4(c)).
C5: The tiles consist of random-shaped black symbols on a white background.
All tiles have the same opacity throughout the game. The symbols being of
random shapes do not necessarily represent or convey any meaning to the user.
C6: We allow some tolerance on the placement of the tile and the gold. This
means that the user does not need perfect accuracy when dropping tc onto tr
or when depositing gc at Ptc . A drop is considered a match if tc or gc covers
60% of the area of the underlying tile tr or bank, respectively. On releasing
they are automatically superimposed over their destinations. However, there
are exceptions, on K random instances the drop accuracy is increased for gc
only, requiring 90% overlapping area. We choose K = k1 . . . k5 randomly from
consecutive instance intervals {i1 . . . i5}, {i6 . . . i10}, . . . , {i21 . . . i25}. Each time



the drop accuracy is not met, gc automatically moves back to Ptr . The user is
then allowed to re-try.
C7: Each time there is a mismatch tc moves back to its original location Ptc .
The user is then allowed to re-try. However, as soon as the user hovers over tc,
the grid is again shuffled according to Constraint C3.

3 The CT Constraints & Mental Processes

Here, we illustrate the importance of the aforementioned constraints and how
they aid in triggering the mental processes.

3.1 Revisiting Visual Search

Our game (CT) has been designed to invoke self-terminating searches. As soon as
the user finds the target tile, further searches are not required. Due to Constraint
C1, we refer to our search set as a (+ve) search set, meaning that the target
must appear within the set. This ensures that a match always occurs and the
search terminates. Constraint C3 aids in invoking serial search and C5 reduces
the conspicuity of the target. If a target location is known beforehand and if a
target is too conspicuous they can affect the search process [8]. If the grid was
not shuffled at each instance according to C3 & C7, the user may remember
certain target positions. This bias the visual search process.

3.2 Revisiting Working Memory & Information Processing Speed

Due to Constraint C2, the user can observe the current game status. The user
can observe the empty grid cells and the already placed tiles. He can hold this
information in his working memory for a short interval of time while he completes
action Arew. If the information is not lost, he will be able to decrease the size
of the search set |θ| for the next challenge. For example, for the 11th instance
of the game he will be able to shrink |θ| to 15, thus skipping over the already
placed 10 tiles. This design concept is similar to Visual Pattern Test [11] used
for measuring pure visual working memory. Recall that according to Constraint
C3, after the user completes Arew, all 25 tiles are visible. Therefore, if the user
fails to hold the information (status of the game) in his working memory, his
|θ| must be lower bounded by 15. In such case, the time elapsed on placing the
target tile correctly is relatively longer. Therefore, it is necessary to investigate
the working memory capacity in terms of information processing speed for each
individual user.

3.3 Revisiting Automatic Processing & Priming Effect

Recall, that during Arew two straight lines are drawn from Ptc to Ptr to guide
the movement of the gold coin. Constraint C4 provides priming for invoking the
automatic processing. We conjecture that a user who is primed with the color



change of the straight lines, will drag gc on a straighter trajectory compared
to an unprimed user. We measure the effectiveness of the prime, EOP , as the
ratio of the length of the line not overlapped by the gold coin to the length of
the guiding line. Constraint C6 also has priming effect on the user, particularly
on the way the gold coins are deposited in the bank, and the tiles are dropped
on the grid for the subsequent instances. We measure the effectiveness of this
priming as the ratio of the two areas. The primes are considered effective if the
ratios tend to 1.

3.4 Evidence of Working Memory and Priming Effect from
Experimental Data.

We analyze our data to provide evidence for the underlying mental processes.
Recall that after a successful match, the user can observe the game status (C2).
If this information is not lost from the working memory, then |θ| must decrease
with each instance, resulting in a descending series of Visual Search Time,
V ST . That is, V ST s must decrease with decreasing |θ|’s as the game progresses.
Considering information storage is likely to occur near the end of the game,
since it is easiest to recall the last remaining empty cell, we find the length of
sub-sequence l = n−k+1 of n instances such that V STk>V STk+1> . . .>V STn
for |θ|k>|θ|k+1> . . .>|θ|n = 1. Since the user might store partial information as
well, we allow some tolerance such that v number of violations (sign changes)
can happen in the sequence. Figure 1(a) shows the average sub-sequence length
l (for 5 games) when v is varied from 0-3. We can observe the variations in
working memory capacities among a group of users.

On the other hand, after triggering a prime, a user might, (1) receive it
and get influenced (invocation of automatic processing), (2) receive it but not
get influenced by it (no invocation of automatic processing) or, (3) not receive
it at all; e.g. a cautious user dropping a gold with overlapping area ≥ 90%.
Considering that the prime has been triggered in the ith instance, the following
is a possible explanation for the three cases in the i+1th instance, for Constraint
C6. (1) EOP iC6<EOP

i+1
C6 and gc was misplaced at the ith instance. In other

words, the user drops gc with higher accuracy in the i+ 1th instance, i.e. prime
was received and was effective. (2) EOP iC6 ≥ EOP i+1

C6 and gc was misplaced in
the ith instance, i.e. prime was received but was not effective. (3) gc was never
misplaced in the ith instance, i.e. prime was not received. Figure 1(b) shows
the average percentage of each of these cases (for 5 games) when primes are
triggered. Notice that due to slight inaccuracies in placement, all users received
at least some prime. Around 30% of the users never missed getting influenced
(without being aware) by the prime whenever they received it.

4 Feature Estimation Process

Raw Data. The interaction data during performing the task is collected for each
user: (1) The xce and yce co-ordinates of the click event e and the corresponding
timestamp tce. (2) The xre and yre co-ordinates of the release event e and the



Fig. 1. We chose 50 users randomly from Experiment-1(b). (a) Average sub-sequence
length with a linear relationship between V ST s and search set sizes indicating differ-
ences in working memory capacity of different users. Different curves represent varying
number of violations from linear relationship. (b) Percentage of the three cases when
prime is triggered (Section 3.4). Users are influenced in different ways.

corresponding timestamp tre. (3) The horizontal co-ordinate xde, de = 1 . . . n
and the vertical co-ordinates yde, de = 1 . . . n of the pointing device sampled
at 100 ms intervals.

4.1 Cognitive Feature Estimation

We estimate features that capture cognitive abilities from the aforementioned
raw data. We also discuss other important features that are based on the users’
responses to certain stimuli during the execution of an instance.

Drop and Pick Reaction Time, DPT (f1, f2). At the end of the Aresp action,
the user picks up the gold coin, gc, appearing at Ptr . The time elapsed between
the stimulus (gc) and the user picking it up (response) is denoted by tgDPT (f1).
At the end of Arew, after depositing the gold coin at Ptc , the user picks tc from
location Ptc . The time elapsed between the appearance of the stimulus (tc) and
the user picking it up (response) is referred to as the ttDPT (f2). DPT might
seem similar to traditional pause-and-click. However, traditional pause-and-click
is highly dependent on what the user is currently reading or exploring [6]. DPT
is the result of a controlled stimulus and therefore, is not content-specific.

Visual Search Time, VST & ratio(f3, f4). V ST is the time required for
the user to visually search and detect the target tile. V ST is calculated by
the subtraction method [2]. The subtraction method involves subtracting the
amount of time information processing takes with the process from the time it
takes without the process. That is the time difference between actions Aresp
(Atresp + ttDPT ) and Arew (Atrew),

V ST = (Atresp + ttDPT ) − Atrew. (1)

It is important to consider ttDPT in the above equation, since a tc is exposed
as soon as a gc is deposited. So the minuend of equation (1) refers to the time
elapsed between the exposure of tc and its correct placement inside the grid.



The time elapsed during Arew is simply the movement time and does not involve
user’s thinking or search time. Therefore, we are able to distill the plain visual
search time for each instance. Moreover, note that the subtraction method allows
V ST to self-adjust to the user’s specific environment by remaining immune to
differing mouse speed or acceleration. We also consider the ratio of Atresp to Atresp
+ ttDPT , (f4) to capture the phenomena where user searches while dragging, or
searches and then drag.

Information Processing Speed, IPS (f5). If information (game status) is not
lost from the user’s working memory then in the ith instance the user is left
with 25 - i +1 alternatives for the search operation. We can derive the following
equation for IPS from Hick-Hymen law [12, 13]

IPS =
Hi

V ST
. (2)

The amount of information in the ith instance can be expressed as Hi =∑|θ|
k=1 Pk

(
log2

[
1
Pk

])
where Pk is the probability of the kth alternative in the

ith instance with |θ| = 25− i+ 1 alternatives. Due to the Constraints C3 & C7
all these alternatives are equally probable.

Pause and Search, P&S (f6, f7). While dragging the target tile we noticed
that the user sometimes pauses and searches for the target inside the grid. If the
user remains on the same pixel for more than α = 0.1 seconds while dragging
the tile or gold, we refer to it as a pause. We measure the ratio of tile paused
time to Atresp during Aresp (f6), and the ratio of gold paused time to Atrew, (f7)
during Arew.

Effectiveness Of Priming, EOP (f8−19). Recall that Constraint C6 provides
the priming effect necessary to invoke an automatic processing. We measure the
effectiveness of this priming through EOPC6

EOPC6 =
Area overlapped between source and destination

Area of source or destination
. (3)

EOP gC6 (f8) refers to the effectiveness of priming while depositing gc (source)
in the bank (destination). EOP tC6 (f9) refers to the effectiveness of priming while
placing the tc (source) on the matching tile tr (destination). We consider related
features that might capture the effectiveness of priming as well. We consider the

Drop Error Distance for tile, 4Et
xre, yre (f10) and gold, 4Eg

xre, yre (f11), defined as
the distance from the drop point to the center of their destination. We measure
the Click Error Distance which is the distance of the click point to the center of

the tile 4Et
xce, yce (f12) and the gold 4Eg

xce, yce (f13). We also consider the Drop

Error Angle for tile/gold 6
Et/g

(xre, yre)
(f14, f15) which is the angle made from

the drop point to the (+ve) x-axis with the center of the destination being the
vertex, and Click Error Angle which is the angle made from the click point to the

(+ve) x-axis with center of the tile/gold being the vertex, 6
Et/g

(xce, yce)
(f16, f17).

On the other hand, we measure the effectiveness of priming due to C4 as the
ratio of two lengths. EOPC4 is the ratio of the length of the lines not overlapped



by the gold coin to the total length of the guiding lines. EOPL1C4 (f18) and
EOPL2C4 (f19) are the effectiveness of priming on the top and bottom guiding
lines respectively.

5 System Design

In this Section we provide details of the classification technique used to identify
the users. We then discuss the security of our system against impersonation
attack. Details on how we measure the error metrics in our system are also
provided.

5.1 Classification Technique

We use a statistical approach for classifying the users. We model the features
as random variables F1, F2, . . . , Fn and assume class-conditional independence
between them. In the ith instance of the game a row of feature values F i = (f1,i,
f2,i, . . . , fn,i) is generated. Therefore, for a sequence of k instances denoted by
F = (F 1, . . . , F k), the interaction information can be denoted using a matrix of
size k×n. During the learning stage the probability density functions of the fea-
tures are estimated using a non-parametric approach. In the classification stage
posterior probabilities are used to estimate the probability of a classification
being correct.
Learning. The learning phase consists of the estimation of the probability den-
sity function for each of the feature vectors. A parametric approach to estimating
a density, f , involves assuming that f belongs to a parametric family of distri-
butions. We resort to using non-parametric approach, in particular, the kernel
density estimator [14] to avoid making any assumption on the distribution of
the underlying population and to better understand the structure of the data.
The easiest non-parametric estimation of a probability distribution is the use
of histogram. It is simple but has disadvantages such as discontinuity and high
sensitivity to bin edges. Kernel density estimators are superior to histogram and
are quite intuitive [14, 15].

We estimate the unknown density function fj(x) of the jth feature vector,
represented by a random variable Fj , based on its m samples (or training data)
x1, .., xm. Assuming that the observations are independent realizations of Fj ,

the estimation of the density function, f̂j(x), using a kernel density estimator,

for univariate case is f̂j(x) = 1
mh

∑m
i=1K

(
x−xi

h

)
. At this point, the estimation

of fj(x) reduces to (1) choosing a kernel function K and, (2) selecting an ap-
propriate bandwidth selection algorithm to determine h. Although the choice of
kernel functions is not of particular importance for an experiment [14], accord-
ing to our empirical results, we used Gaussian kernel among others as the kernel
function K. The kernel estimate is constructed by centering the Gaussian kernel
at each observation. Therefore, the value of the kernel estimated at a point xi
is simply the average of the m normal kernel ordinates at that point. Therefore,



the width of the chosen kernel function determines the smoothness of the re-
sulting density function. Oversmoothing can happen as a result of larger width
whereas undersmoothing can happen due to smaller width. Therefore, selecting
the appropriate width h is a crucial task while estimating the density function.

The performance of the kernel density estimator depends on how closely the
estimated f̂j(x) resembles the true fj(x) of the jth feature. This performance
can be measured in terms of the MISE (Mean Integrated Square Error), which

globally measures the distance between f̂j(·;h) and fj(x),

E[ISE(f̂j(.;h))] = E

∫
f̂j(x)

2
dx−2E

∫
f̂j (x) fj (x) dx+E

∫
fj(x)

2
dx (4)

We use least square cross validation (LSCV) [16, 17] which is a data-driven band-
width selector. The third term on the right hand side of equation (4) does not
depend on h and can be ignored. The first term can be calculated from the ob-
servations. The middle term depends on h and contains an unknown quantity
fj (x). In order to solve this issue, we resort to a leave-one-out LSCV. Although
there are more complex bandwidth selection algorithms [18], we chose LSCV
since it is simple and intuitive.
Classifying. We assume class-conditional independence between the features,
modeled as random variables F1, F2, . . . , Fn, for a user uw, w ∈ {1, . . . , m}.
So for the ith instance, Pr

(
F i|uw

)
=

∏n
j=1 Pr(fj,i|uw). Although the class-

conditional independence between features is not true in general, the assumption
works well in many complex real life systems. The posterior probability of a user
uw for an instance,

Pr
(
uw|F i

)
=

Pr (uw)
∏n
j=1 Pr(fj,i|uw)

Pr(f1,i, . . . , fn,i)
. (5)

We then classify a test instance according to the largest posterior probability.
We accept a sequence of instances as genuine if the number of accepted instances
exceeds some decision threshold α. The value of threshold α is set in such a way
such that the false acceptance rate is close to the false rejection rate.

5.2 Security Model

Correctness and security of a biometric system is measured using False Accep-
tance Rate and False Rejection Rate. A biometric system should not accept a
user without genuine biometric (FA), and should not reject a genuine user (FR).
Therefore, both these metrics should remain close to zero. We evaluate our sys-
tem performance using user u’s own test sessions and other test sessions from
n − 1 users. A positive test session of length l instances is considered misclas-
sified for a user u, if the classifier outputs a score below the threshold α. This
is referred to as a False Rejection. On the other hand, a negative test session
is considered classified if the classifier’s output score is above the threshold α.
This is referred to as a False Acceptance. We calculate the FAR as the ratio of
FA to TN, where FA is the number of false acceptance and TN is the number of



test sessions belonging to the n − 1 other users. The FRR is calculated as the
ratio between FR and TP where FR is the number of false rejection and TP is
the number of test sessions belonging to the user u.
Impersonation Attack. Impersonation attack in biometric systems involves
an attacker generating the biometric information of a legitimate owner somehow
without the owner being present at the scenario [19], for example by lifting
latent fingerprints from objects and presenting it to the system. In our system
the attacker is allowed to observe a target user’s gameplay. Later on, the attacker
tries to mimic that user’s gameplay in order to get authenticated as the victim
user. The success of the attacker is measured as the probability of success in
being authenticated as the claimed user. We build a web-based program capable
of simulating any user’s game playing activities once fed with data collected
during the data acquisition period. We then select experienced users and instruct
them to observe and imitate other users’ simulations (Section 6.3). We assume
that the user’s interaction data are not available to any computer programs such
as spyware.

6 Experiments & Results

We formulated two questions. (1) Is it possible to verify a user based solely on
the derived cognitive features with high accuracy under, (a) controlled condition
and under, (b) non-laboratory condition? (2) How effective are impersonation
attacks against our system when carried out by trained users?

We devised three separate experiments to answer the above questions. Since
our experiments required human volunteers, we obtained approval from the Re-
search Ethics Board of our University. The 1st experiment was carried out in a
controlled environment with 23 graduate students. The 2nd experiment consisted
of 129 workers from Amazon Mechanical Turk. And the 3rd one was carried out
with 5 graduate students in a controlled environment and 10 Amazon Mechan-
ical Turk workers. All experiments were divided into three phases (1) Phase-I,
where participants agreed to the consent information. (2) In Phase-II, a short
video displayed how the game is played for a few instances. (3) In Phase-III,
participants were required to fill up an exit survey consisting of the standard
SUS [20] and a few other questions SFun. In all the experiments, interaction data
were recorded using JavaScript and submitted passively via AJAX requests to
the web server. We randomly picked a set of distinct images for each user in a
session.

6.1 Experiment 1(a): Accuracy & Efficiency (Controlled Condition)

The goals of the 1st experiment were to figure out, (1) Accuracy and verification
time of our system when users are trained in a non-distracting environment using
a single platform and, (2) perform an analysis on the derived features.
Setup. Each user in a session is required to play the game 7 times, every time
with a new random partitioned image, resulting into a dataset of 25×7 = 175
instances. Afterwards, they completed the exit survey. All of them used a PC



Works FAR FRR Session Size System Notes

[5] 2.46% 2.46% 2000 Mouse Actions MDS Free mouse movement

[4] 6.3% 6.3% 20 Strokes MDS Confined within a task.

[6] 1.3% 1.3% 20 Mouse clicks MDS Free mouse movement

[21] 2.11% 2.11% 25 Text Characters HBS Confined within a task

[22] 0.01% 4% 683 Characters KDS Fixed-text input

[23] Accuracy 93.3% - 99.5 % 200 Characters KDS Free-text input

[Ours] 0%, 2.3% 0%, 7.8% 25 Instances CBS Confined within a task

Table 1. Comparison with other approaches. Mouse Dynamics System(MDS),
Keystroke Dyanmics System (KDS), Homogeneous Physio-Behavioral System(HBS),
CBS (Cognitive based Biometric System). Session size refers to the amount of interac-
tions during the authentication phase.

with 2.10 GHz Intel i3, 4GB RAM and an wireless optical USB mouse. They
used Google Chrome on a screen of resolution 1366× 768 (96 DPI) in Windows
7 SP1 OS.
Intra-Session Evaluation: The dataset was divided into two parts. The first
part consisting of 5 games (g1, . . ., g5) each of 25 instances, is used for training
purpose and the last two games g6, g7 are separately used for testing purpose.
The average EER is 0% suggesting that all users have consistent game playing
activities in a continuous session. Figure 2(a) shows the variations in FAR and
FRR, at α = 0.5, as the number of instances are varied. Less number of instances
e.g. 16 would have significantly decreased the enrollment and verification time
but with an FRR of 8.7%. Table 1 provides a comparison of our system with
others. The verification time is the time taken to collect the verifiable biometric
data and the time taken to complete the classification task [24]. It took an
average 76.7 seconds to complete one game (25 instances) and an average of
around 44.7 seconds to complete part of the game (16 instances), considering
time intervals, (Atresp+Atrew). These are comparable to several recently proposed
authentication technique (Table 2). Our classification time does not have any
particular impact on the verification time.
Feature Analysis: We use data from the 23 users for analyzing the features.
Figure 3(a) shows the correlation coefficients of pairs of features in a color-coded
plot. There are a few highly correlated features. According to our observation
these pairs do not have any effect on classification accuracy. We consider all
19 features, since they do not add any significant burden on the training time.
We also considered the strength of each of the features in identifying the 23
users. Each feature was in turn used for learning and classifying. We found that
features related to DPT , EOPC4, V ST and P&S are in the top 7 based on
average EER.
Inter-session Evaluation: Participants were emailed to play in three other
occasions, each separated by 1-day, 2-day and 3-day intervals respectively. We
consider these intervals to be congruous with real account login intervals. The
training data came from the original data acquisition session (g1, . . ., g5). On each
occasion participants were required to complete one game using any machine



Fig. 2. (a) Avg. FAR and FRR at α = 0.5 (Section 5.1) with varying number of
instances. The first 5 games are used for training and the last 2 for testing purpose
(Intra-session). (b) Box plot of Gold Pick Reaction Time (in seconds) before noise
removal (whiskers set to 3) of a group of Amazon workers showing outliers.

(except cellular device) and browser at their most suitable time. At α = 0.5,
FAR remained 0% through all sessions with FRR being 0%, 8.70% and 4.35%
on the 1, 2 and 3-day sessions respectively.

6.2 Experiment 1(b): Accuracy & Efficiency (Non-Laboratory
Condition)

The goal of this experiment was to evaluate the system with random users from
different parts of the world who self train and later remotely authenticate. We
created 4 HITs altogether. The 1st HIT was created with 130 assignments to have
130 unique workers. We gathered 129 valid submissions until the HIT expired.
Each assignment was worth $0.7. We refer to each HIT as a session. The workers
were directed to the website hosting the game. After watching the video, they
were required to play 7 games and then complete an exit survey. At the end
workers copy-pasted a code generated on our website back to Amazon.
Intra-Session Evaluation: Similar to Experiment-I, g1, . . ., g5 were used for
training and g6, g7 for testing purpose. We noticed abnormal V ST s in the
dataset for few cases. On closer scrutiny and observing the simulations for such
cases we noticed very large Drop and Pick Reaction Time, ttDPT and tgDPT .
This shows that users are more likely to get distracted at the end of the ac-
tions (Aresp, Arew) rather than while performing them. We detect these ex-
treme outliers using interquartile range for each user u, with the upper fence
UF = fQ3

u +(3×f IQRu ), fu ∈ {ttDPTu
, tgDPTu

} and replacing them with UF (Fig-
ure 2(b)). Noise removal was done separately for the training and test dataset.
Figure 2 (a) shows the avg. error rates for varying number of instances for the
129 workers. Our classifier reaches an FAR of 2.3% and FRR of 7.8% with ≥ 25
instances. The average time it took to complete one assignment of the HIT
is 24.3 minutes. Mouse type statistics included wireless/wired mouse (61.3%),
laptop touchpad (38.7%) (user claimed).
Inter-Session Evaluation: We created another 3 HITs, each separated by 1,
2 and 3-day intervals respectively. We made sure participants completing the



Fig. 3. (a) Correlation coefficients [-1,1] of pairs of features in a color-coded plot. (b)
Results from Impersonation attack. Most instances are accepted as “own” rather than
as the victims’ (attack-1, 2 and 3).

4th HIT had already participated in the previous 3 HITs. Each assignment was
worth $0.2. We received 49, 37 and 37 valid submissions until the HIT expired.
The assignment required completing only one game. As before the classifier used
the initial acquired data g1, . . ., g5 for learning. The FAR were 2.08%, 0%, 2.70%,
and FRR 8.16%, 8.11%, 5.50% with α = 0.5 on the 1-day, 2-days, 3-day sessions
respectively. This suggests that even after small periods of inactivity and using
the original training data, the classifier can still distinguish the users.

6.3 Experiment 2: Impersonation Attack

Impersonation attack demands trained users capable of mimicking a victim’s
gameplay. Therefore, participants were selected based on how fast they com-
pleted the previous sessions. We selected 5 participants from the 1st pool and
10 Turkers from the 2nd pool. Each assignment was worth $0.5 (Amazon). Each
participant was required to watch and mimic the simulations of 3 victims. We
considered a strong attack scenario. We, (1) displayed a clock while the simula-
tion was playing, (2) provided the same image in the attack phase, (3) declared
a bonus of $0.5 if the Turkers could mimic accurately and, (4) allowed to repeat
the attacks as many times as desired. All attackers were given instructions to
observe when and how tiles and gold are picked, dragged and dropped.

A successful attack would require reproducing the cognitive features of a vic-
tim. Figure 3(b) depicts the maximum number of instances (out of all attempts)
that have been correctly classified to the corresponding victims. A maximum
of 3 instances were correctly mimicked by user-1 and worker-10 and 13. None
of the attackers would have successfully authenticated with the threshold set at
α = 0.5. In fact, workers 12 and 13 were identified as “themselves” in one of the
games (attacks). A successful attack in this case would require mimicking almost
all 19 cognitive features, which appeared to be a hard task. The challenge tiles
appeared randomly, and the grid was shuffled at each instance (C3 ), and so the
sequence of challenges in the simulation and actual attack differed, making it
harder to recall the corresponding V ST s and other reaction times.



[Ours] [21] [4] [25]

Verification Time, VT(Approx.) 76.7s, 2.5min 39s 25s 5-6min

Test Session Size 25 instances 25 characters 25 strokes 540 items

Enrollment Time, ET(Approx.) 9.8min, 24.3min 6.5min 6.7min 30-40min

Enrollment Session Size ≥175 instances 250 characters 400 strokes 3780 items

Table 2. Comparison of VT, ET, test and enrollment (train+test) session size. Session
size refers to the amount of interactions made during the enrollment or verification
phase.

7 Discussion and Conclusions

Our cognitive based authentication system assumes that users play consistently
and use his cognitive abilities appropriately. This is arguably a desirable property
and careless treatment of security should be punished by denying access. Our
proposed system, like other biometric systems cannot authenticate a user if their
biometric data are damaged (e.g. a severe burn to one’s finger). In cognitive
based systems the damage may be long term and caused by cognitive and mental
disorders, or short term when under the influence of substance. To provide user
access in such cases depending on the type of the damage and the organizational
policy, a different type of authentication system such as a password system,
should be used as backup. Cognitive abilities can change slowly over time due to
age and experience. In such cases, an adaptive enrollment mechanism is necessary
to capture and represent the most current features of the user.

Analysis of user surveys shows that the game is user friendly and easy to play:
71.8% and 85.5% of the users agreed that the game is fun and easy respectively
in SFun questions. The average SUS (System Usability Scale) [20] scores are
within the user-friendly software ratings of 60-70 [26]. Our system can be used
as a stand-alone system, or can be used in a multi-factor authentication system.
Since well selected cognitive features cannot easily be mimicked the authentica-
tion system will be secure. Our future work will include designing systems that
invoke other mental processes and extract a wider range of cognitive features.
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21. Hamdy, O., Traoré, I.: Homogeneous physio-behavioral visual and mouse-based

biometric. ACM Transactions on Computer-Human Interaction (TOCHI) 18(3),
12 (2011)

22. Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke
timing: Some preliminary results. Tech. rep., DTIC Document (1980)

23. Villani, M., Tappert, C., Ngo, G., Simone, J., Fort, H.S., Cha, S.H.: Keystroke
biometric recognition studies on long-text input under ideal and application-
oriented conditions. In: Computer Vision and Pattern Recognition Workshop, 2006.
CVPRW’06. Conference on. pp. 39–39. IEEE (2006)

24. Kung, S.Y., Mak, M.W., Lin, S.H.: Biometric authentication: a machine learning
approach. Prentice Hall Professional Technical Reference (2005)

25. Bojinov, H., Sanchez, D., Reber, P., Boneh, D., Lincoln, P.: Neuroscience meets
cryptography: designing crypto primitives secure against rubber hose attacks. In:
Proceedings of the 21st USENIX Security Symposium (2012)



26. Lewis, J. R., Sauro, J. (2009). The factor structure of the system usability scale.
In Human Centered Design (pp. 94-103). Springer Berlin Heidelberg.

27. Chiang, A., Atkinson, R.C.: Individual differences and interrelationships among a
select set of cognitive skills. Memory & Cognition 4(6), 661–672 (1976)

28. Jensen, A.R.: Individual differences in the Hick paradigm. Ablex Publishing (1987)
29. Dovidio, J.F., Gaertner, S.L.: Stereotyping, prejudice, and discrimination: Spon-

taneous and deliberative processes. Paper presented at the meeting of the Society
of Experimental Social Psychology, Washington, DC (1995, October)

A Related Work

The work closest to ours, although it is a combination of mouse dynamics and
cognitive factors, is that of Hamdy and Traore [21]. The authors combine vi-
sual search and short-term memory effect with mouse dynamics. Their system
requires the user to search for letters on a shuffled virtual keyboard. However,
it is highly likely that the exposure of the same virtual keyboard and the string
of letters have affected the visual search process. The work in [25] uses the con-
cept of implicit learning from cognitive psychology whereby the user is trained
on a fixed sequence which can later be used during authentication. Our system
does not rely on implicit learning and uses a random challenge sequence and so
the user does not repeat the same sequence of activities. Individual differences
in visual search task and information processing speed are evident from recent
works [27, 28]. Individual differences in automatic processing due to priming are
evident from [29].



Fig. 4. (a) User is presented with a challenge tile, tc, at the beginning of the 21st

instance. (b) User performs Aresp, i.e. drags and drops tc onto tr inside the grid. On
a correct match the loose tiles disappear showing the current game status (at 21st

instance). (c) User performs Arew, i.e. drags and drops gold coin, gc, onto Ptc . Top
guiding line color changes from green to red as the gold coin touches it (Constraint
C4). (d) User successfully deposits gc and gets the next challenge tile. All 25 tiles are
visible at this point. Notice that the 21 unmovable tiles in b and d have not changed
their positions. All the loose tiles have changed their position (compare a and d). The
target tile tr appears at its original position in the image.


