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Abstract. Collaborative filtering is a famous technique in recommenda-
tion systems. Yet, it requires the users to reveal their preferences, which
has undesirable privacy implications. Over the years, researchers have
proposed many privacy-preserving collaborative filtering (PPCF) sys-
tems using very different techniques for different settings, ranging from
adding noise to the data with centralized filtering to performing secure
multi-party computation. However, either privacy protection is unsatis-
factory or the computation is prohibitively expensive.

In this work, we propose a decentralized PPCF system, which enables a
group of users holding (cryptographically low-entropy) profile to identify
other similar users in a privacy preserving yet very efficient way, without
the help of any central server. Its core component is a novel primitive
which we named as asymmetric randomized encoding (ARE). Similar to
the spirt of other cryptographic primitives, it is asymmetric in the sense
that, honest party could enjoy performance boost via precomputation
with the knowledge of a profile, whilst adversary aiming to recover the
hidden profile can only launch dictionary attack against each encoded
profile. Thanks to the simple design of ARE, our solution is very efficient,
which is demonstrated by our performance evaluation. Besides PPCF, we
believe that ARE will find further applications which require a balance
between privacy and efficiency.

Keywords: asymmetric randomized encoding, privacy-preserving col-
laborative filtering, recommendation system, peer-to-peer network

1 Introduction

Collaborative filtering [42] (CF) is a widely used data mining technique in rec-
ommendation systems. People can obtain highly personalized and accurate rec-
ommendations for books, movies, etc. based on their past consumption activities
(or user-profile in the rest of the paper), such as rating a movie or buying certain
commodity. With the widespread of different online communities, and people’s
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willingness to share experiences and opinions, CF is getting more popular. It
also becomes increasingly important in our daily life as it brings better user-
experience to customers and larger revenue to service providers.

However, the win-win benefits brought by CF comes at the price of risking
user privacy in various ways. For example, service providers might have the in-
centive to secretly sell user-profile to other parties, or they might unintentionally
leak such information to public. The latter case actually happened, when Net-
flix released a dataset containing about 500,000 anonymous users’ movie rating
profile for more than 17,000 movies in an open competition for the best CF algo-
rithm [43]. About two years later, Narayanan et al. [31] broke the anonymization
of Netflix database by leveraging some limited auxiliary information of the users.

In the light of privacy breach [31], privacy-preserving collaborative filtering
(PPCF) is moving towards untrusted server setting [32-34] or decentralized set-
ting [4,8,9,29,30,37], to eliminate the trust assumption on a centralized server.
Unfortunately, many randomization techniques [32-34] have been shown to be
insufficient to preserve privacy, and existing secure schemes either rely on heavy
cryptographic tools or rely on additional network middleware (see Section 2 for a
detailed discussion). It is fair to say designing a practical PPCF system without
additional infrastructure remains an open problem.

In this paper, we tackle this challenge by formulating and proposing a novel
primitive for the core functionality required in PPCF that only uses relatively
lightweight cryptographic primitives. Most CF systems make use of user-to-user
similarity to provide recommendations. If users are able to identify other similar
users just by themselves through a peer-to-peer (P2P) network, they can then
generate useful recommendation themselves. The key insight of our design phi-
losophy is that, an honest user comes with a user profile to search for similar
users, while an adversary may not be motivated to just target a specific user. We
thus put our attention to devise an encoding mechanism for the user profiles,
such that honest users can efficiently identify similar users, while the best an
adversary can do is to launch a dictionary attack per each participated user.

1.1  Our Contributions

Firstly, we design a specialized cryptographic tool called asymmetric random-
ized encoding (ARE) that enables highly efficient privacy preserving filtering. An
ARE scheme ARE = (P,&,T) is a tuple of three polynomial time algorithms,
where P is the parameter generation algorithm, £ is the encoding algorithm, and
T is the test algorithm. Encoding algorithm & takes a binary string m and public
parameter P as input and outputs a succinct representation (P, m) of m that
only leaks enough information for efficient filtering using the test algorithm 7.
The “asymmetric” nature of ARE captures the property that, any honest user
could efficiently run 7 algorithm with the knowledge of m, whilst adversaries
without m could not due to the asymmetry in their goals and knowledge. Its
“randomized” nature provides better security than any deterministic schemes.
We define appropriate security notions for ARE, propose a very efficient realiza-
tion, and prove its security in the random oracle model.
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While our proposed construction is very simple, we view the major novelty
of our work is the identifications of 1) what can we rely on for security in a de-
centralized setting (not even a public-key infrastructure), where everyone could
be an honest user or an adversary, and 2) the core functionality required in
supporting PPCF.

We then show how to easily combine this “exact filtering” tool and local-
ity sensitive hashing (LSH) to support “similar user filtering”, which ultimately
enables a very simple PPCF protocol: after a user has identified a few “simi-
lar” users securely, she simply exchanges actual user profile in a secure channel,
and then runs a collaborative filtering algorithm locally to generate recommen-
dations. We believe ARE has a broader usage other than privacy-preserving
collaborative filtering. For example, community detection [22], location-based
services (checking if two users are nearby) and other applications which require
a balance between efficiency and privacy in matching low-entropy (in a crypto-
graphic sense) secrets.

Finally, we implement our scheme and evaluate its performance. We show
that our solution is very efficient for practical use.

1.2 PAKE and Privacy-Preserving Matchmaking

After formulating the core functionality in this way, password-based authen-
ticated key exchange (PAKE) [6] appears to be useful. It enables several
parties holding a shared low-entropy password to securely establish a crypto-
graphically strong session key. The major distinctive feature of PAKE is that,
a secure PAKE protocol should withstand online dictionary attack, i.e., one in-
teraction of the protocol can only eliminate at most one possibility from the
“passwords dictionary” (i.e., one candidate in the password space). The security
of a PAKE is usually established by upper bounding the probability of success
by any adversary (under a certain formulation of security game between a chal-
lenger and an adversary) by something similar to 5—; + ‘%‘, where k1 and ko are

the number of attempts (modeled by “queries” either to the challenger or to the
random oracle [7]) performed by the adversary, A is a security parameter, and
M is the password space. We will also formulate the security of our ARE in a
similar vein.

Recently, Shin and Gligor [36] proposed a matchmaking protocol with en-
hanced privacy features. A matchmaking protocol enables two protocol partic-
ipants holding the same “wish” (which may not have high entropy) to anony-
mously authenticate each other when their wishes match. Their protocol is based
on PAKE [6,25,26]. To see how this protocol might be potentially useful in PPCF
system, we start with the assumption that all users in the system are parti-
tioned into well-defined “interest groups” according to their user-profiles. Given
a particular user-profile, one could effectively determine which interest group it
belongs to. In order to identify similar users, one could run the matchmaking
protocol using the identifier of “interest group” as the “wish”.

The major drawback of this approach is that the protocol is inherently in-
teractive, as the underlying primitive PAKE is interactive. To the best of our
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knowledge, there exists non-interactive AKE (which may be applicable on even
weak mobile devices [44]), but not non-interactive PAKE. Even worse, this ap-
proach actually requires interaction between every pair of two parties, as that
is the functionality supported by the underlying protocol of Shin and Gligor.
Also, to maintain a certain level of authenticity (which is not a must in the
PPCF setting), this matchmaking protocol requires the existence of a semi-
trusted matchmaker, who is responsible for maintaining a list of pseudonyms of
all valid users (and revoking misbehaved user’s pseudonym if necessary). This
semi-trusted matcher itself is a potential single-point of failure, which we tried
to avoid. As a result, this approach is not that appropriate for our application.

2 Related work

2.1 Privacy-preserving Collaborative Filtering

Server based PPCF. To the best of our knowledge, privacy-preserving col-
laborative filtering was first formulated in the centralized server setting [32-34].
A typical scenario would be the following: privacy-concerned end-users want to
obtain useful personalized recommendations from a untrusted service provider,
but they are unwilling to compromise too much of their privacy. The service
provider collects private data from different end-users and run a centralized CF
calculator to generate user-specific recommendations.

In order to protect users’ privacy, the general strategy adopted in the cen-
tralized setting [32-34] is to let users perturb their data before sending it to
the service provider. Various perturbative techniques have been proposed to
achieve privacy. For example, actual ratings could be randomized by noise addi-
tion [33], fake ratings could be inserted [34], and actual sensitive ratings could
be suppressed (deleted) [32]. The high level idea underlying all these is that the
untrusted server could only know a vague user-profile, and the noise level serves
as a tunable parameter trading off recommendation accuracy for user privacy.
Unfortunately, various studies [23,24, 48] have shown that basic randomization
techniques are not sufficient in many practical scenarios, where the adversary
may possess some auxiliary information about target user.

To better quantify the level of privacy that could be obtained using random-
ized techniques, McSherry et al. [28] also considered the notion of differential
privacy [15]. Yet the security model is slightly different since it only protect end-
users’ privacy against other curious users as well as outsiders, meaning that the
centralized server is still trusted. It remains an interesting question on how to
enable differential privacy against a untrusted centralized server.

Decentralized PPCF. Early work of P2P collaborative filtering (date back to
2002 [11]) relies on secure multi-party computation and homomorphic encryp-
tion. The most significant limitation of it (and follow-up work [1,4]) is the high
overhead due to the use of computationally expensive cryptographic tools.
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Recently quite a few lightweight peer-to-peer protocols [8,9,29, 30,37] have
been proposed for identification of similar users with different level of privacy.
Earlier approaches [8,9] require the end-users to broadcast their obfuscated pro-
file with noise injected to find out similar users and then ask them for recommen-
dations. The limitation of these systems is that individual profiles are essentially
exposed in plaintext. Shokri et al. [37] addressed this problem by classifying
users’ profiles into two types, namely, offline and online. Online profile, being
only a subset of offline one, is stored in an untrusted server to generate recom-
mendations. Users keep their offline profile secretly but they will communicate
with other users to aggregate offline profiles distributively. Online profiles are
updated periodically by synchronizing with offline profiles. This can be seen as
limiting the exposure by splitting the process into two stages. Nandi et al. [29,30]
introduced the use of non-colluding decentralized middleware to enhance privacy.
In a nutshell, these works either build on a weaker privacy model or rely on ad-
dition parties.

2.2 Cryptographic Approaches

The simplest approach to identify similar users is that, every participant broad-
casts her profile in plaintext in a P2P network. Upon receiving other participant’s
profile, user privately decides whether this profile is similar to hers or not. Thus,
users could generate recommendations using collected similar profiles. Each user
might want to encrypt their profile for preserving their privacy. We have differ-
ent options here. If symmetric key is used, the whole network needs to share the
same key, which is clearly not a good solution. If the recipients’ keys are used, a
large amount of ciphertexts needs to be sent, or a large amount of computation
(in the order of the size of the whole network) is needed to perform broadcast
encryption (not to say most broadcast encryption schemes require a setup stage
and is not possible in P2P setting.) The final option is to encrypt their profile
using their own key. But it does not allow any comparison.

A few variants of public-key encryption may look potentially useful. However,
they are not designed for our specialized purpose, so they are not efficient enough
and may exhibit shortcomings in our application. More importantly, they cannot
enforce asymmetry in computation times between an honest test and a malicious
dictionary attack. We will elaborate one by one below. To this end, we believe
new ideas are needed to develop the “right” cryptographic primitive for PPCF.

Probabilistic Public-Key Encryption with Equality Test (PKEET).
PKEET [46] allows anyone to test whether two ciphertexts ¢y, ca (possibly gen-
erated using different public keys) are encrypting the same message. Although
it is primarily targeted for searchable encryption and encrypted data partition,
PKEET appears to satisfy our functional requirement. Specifically, every user
waits for the PKEET-encrypted profiles from others for comparison.

There are two major drawbacks. First, the test algorithms of all existing
PKEET schemes [38,39,46] are implemented using bilinear map, which is not
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that computationally efficient to process a large amount of ciphertexts. Second,
PKEET allows anyone to test if two ciphertexts come from the same possibly
unknown message. Public nature of the test means there is nothing differentiating
an adversary from honest users. On the other hand, an adversary, without any
knowledge of any profile, can just grab the ciphertexts from two different users
and test if they correspond to the same profile.

Public-Key Encryption with Non-interactive Opening (PKENO). In
PKENO [14, 16], opening refers to the decryption. PKENO allows one holding
the key pair (pk, sk) to provide non-interactively to any third party a “proof”
about a ciphertext c. Then, anyone with this proof can verify if ¢ is indeed
an encryption of a certain plaintext m under pk. For PPCF, every user can
broadcast an encryption of her own profile together with a proof, then run a
verification procedure locally to see if the received profiles will be opened to
their own profile.

PKENO suffers from drawbacks similar to those of PKEET. The most effi-
cient instantiation of PKENO [16] still requires eight modular exponentiations
plus some other computations for verification. The non-interactive proof can be
used by both an honest user and an adversary. Even worse, the proofs in many
instantiations [16] can actually served as decryption keys, i.e., attaching the
proof simply reveals the message to everyone.

Plaintext-Checkable Encryption (PCE). PCE [10] is a randomized public-
key encryption scheme that allows everyone to check its plaintext, i.e., without
the secret key, anyone can check if ¢ is encrypting a plaintext m.

The original work of Canard et al. [10] showed how to transform any prob-
abilistic public-key encryption scheme (and possibility its generalization like
identity-based encryption) into a PCE, in the random oracle model. The ba-
sic idea is that the randomness p used in PKE to create a ciphertext c is derived
from message m and random bit-string r (p < H(m||r),r < {0,1}*), and r is
also sent along with ciphertext ¢ (for a certain security parameter ). Given c||r,
anyone holding the message m could then reproduce the randomness p and re-
encrypt m to get ¢’ herself. The remaining plaintext-check procedure is a simple
equality check of ¢/ Ze

Recall that our design goal is to enable an honest user with the knowledge
of the hidden message (i.e., the profile) to be able to perform the checking
procedure faster than an adversary without a specific candidate m in mind. That
appears to be not possible for their generic construction when it is instantiated by
existing efficient probabilistic public-key encryption schemes such as ElGamal.
In more details, the most expensive operation will be modular exponentiation,
yet the exponent is unknown without the knowledge of the randomness p in the
ciphertext, i.e., the knowledge of the m does not play an important role here for
possible acceleration of the checking procedure. Another important difference is
that we do not require the decryption functionality supported by PCE. As a
result, we could design simpler and hopefully more efficient schemes.
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Deterministic Encryption (DE). Deterministic public key encryption (or
DE for short), formalized by Bellare, Boldyreva, and O’Neill [5], has been a hot
topic recently, as it provides an alternative when randomized encryption [20]
has inherent drawbacks. DE finds its application in fast searching on encrypted
data, or in scenarios where length-preserving ciphertexts are desirable.

DE can be used to realize PPCF, but apparently an offline dictionary attack
of preparing DE’s of all possible profiles can be launched. Standard salting helps.
Yet that also hinders honest users as they need to use the different salt appended
with the ciphertext for trail encryption and testing. Finally, as PCE, our PPCF
application does not need decryption and a simpler scheme may suffice.

Fully Homomorphic Encryption (FHE). FHE is a powerful tool that allows
secure evaluation over ciphertext. Secure instantiation of FHE is not known until
2009, when Gentry published his seminal work [17]. There are improvements in
efficiency [18,41], but it is still a bit far from practical for many applications.

Secure Multi-party Computation (SMC). SMC was first formalized by
Yao [47] and Goldreich et al. [19], as a method for a group of mutually distrust-
ful parties to jointly compute a function f on their private inputs. Some early
work of PPCF [1,11] used SMC as the underlying tool. They suffer from a high
computation overhead, and they do not support dynamic user joining/leaving.

3 Preliminaries and Definitions

Here, we briefly review some basics about collaborative filtering and LSH, de-
velop the notations for the rest of the paper, and lastly, define our new primitive.

3.1 Collaborative Filtering

In general, collaborative filtering (CF) algorithms can be broadly classified into
two types: memory-based and model-based [42]. Our system only supports memory-
based CF algorithms but we briefly mention model-based ones for completeness.
We note that it is a challenging open question to support efficient privacy-
preserving model-based CF, for the reason we will explain shortly.
Memory-based CF relies on pairwise statistical correlation. If two users
have similar rating patterns according to existing records, they are likely to have
similar opinion for some other items. We denote the rating from user v for an
item 4 by 7, the set of all ratings of user u by a vector r,,, the set of items
rated by user u by S,. There are many ways to define similarity, such as cosine
similarity and Jaccard similarity. The cosine similarity of two vectors r; and 7o
is defined by SIM(rq,r2) —22—  Similarly, the Jaccard similarity of two

s T leall-flrall

sets S and S is defined by SIM(S1, S2)jac = igiggj
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Let set N be the top-k users most similar to user u and who also rated
item 4. Using ratings from these users, we could predict user u’s rating for item
¢ in many ways. We list two possible predictions as follows:

_ SIM (u, u’)

1
r-szrworr-— Tusi
ur kuIGN u't ur = ZuleN |S|M(u7u’)| u't

where SIM(u,u’) denote some similarity metric like cosine similarity or Jaccard
similarity defined above.

Model-based CF, as the name implies, performs filtering by modelling
the global structures of users’ ratings, instead of maintaining memory of users’
rating. Important algorithms of this type include singular value decomposition
(SVD), cluster analysis, Bayesian network, etc. Comparing with memory-based
algorithms, model-based ones in general have better prediction performance
but they are more computationally expensive. Yet, these algorithms require an
overview of all users’ ratings, which make it challenging to preserve privacy
without using heavyweight cryptographic machineries, such as FHE and SMC.

3.2 Locality Sensitive Hashing

Our system relies on Locality Sensitive Hashing (LSH) [2] to allow individual
user to identify similar users locally, which we briefly review below.

A family F of LSH functions operates on a collection of objects. The most
interesting and important property of an LSH function is that, similar objects are
more likely to be hashed to the same bucket. Formally, let SIM(z, y) denote some
similarity metric defined on the collection of objects, an LSH family satisfies:

P [h(x) = h(y)] = SIM(z, y).
Similar to the recent PPCF systems [13,30], we consider the following LSH of
Charikar [12] that is defined over cosine similarity. First, pick k random vectors,
with components drawn independently from a Gaussian distribution (u = 0,0 =
1). To calculate the LSH digest of a user-profile r, we need to calculate the dot
product of r with each random vector v;, namely v; - 7. The i*" bit of the LSH
digest L(7)[é] is set to 1 if v; - r > 0, 0 otherwise.

3.3 Cryptographic Notations

A binary string is represented using lower case letters like z and |z| denote its
length. The i*® bit of x is z[i] and z[i, j] denotes =[i]...z[j] for 1 <i < j < |z|.
If S is a finite set then |S| denotes its size and s &S denotes picking an element
uniformly random from the set S. For ¢ € N, we let [i] = {1,...,i} . We denote
the security parameter by A € N and its unary representation by 1*.
Algorithms are polynomial time (PT) and randomized unless otherwise in-

dicated. By y & A(x1,...; R) we denote running algorithm A on input zy,...
using randomness R, and assigning the output to y. We may omit R for brevity.
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Let G denote a group of order p, where p is a A bit prime number, and g is a
generator of G. If m is a binary string of length less than or equal to A, then we
use capital letter M to denote some efficient mapping of m as a group element in
G. We do not expect any special property from this map. In particular, it does
not need to be a cryptographic hash. We use M to denote the message space.

A family of hash functions H = (HK,H) is a pair of PT algorithms, the
second is deterministic. The key generation algorithm HC takes input 1* and
returns a hashing key Kj. The hashing algorithm H takes K} and a message m
and returns its hash H <« H (K}, m). In the security proof of our scheme, the
hash function will be modelled as a random oracle [7].

3.4 Asymmetric Randomized Encoding

An Asymmetric Randomized Encoding scheme ARE = (P,&,T) is a tuple of
three PT algorithms. The parameter generation algorithm P(-) takes a secu-
rity parameter 1* as input, and returns public parameter P. The encoding al-
gorithm £(-,-) takes the public parameter P and a binary string m as input,
returns £(P,m) as an encoding of m. T(-,-,-) is the test algorithm that takes
P,m,E(P,m') as input, outputs a boolean variable T' depending on the relation
of m and m/. Recall that the message uncertainty is the only thing differentiates
an attacker from an honest user. We formalize test correctness and two security
requirements for an ARE scheme as follows. For brevity, the probabilistic gen-

eration of the public parameter P & P(1*) is omitted from the description of
the probabilities below.

Test correctness requires that it is universally possible to check whether the
preimage of £(P,m’) equals to m with overwhelming probability. Formally,

Pr[T(P,E(P,m'),m) = ‘True’ |m =m'] > 1—4,
Pr[T(P,E(P,m'),m) = ‘False’ |m # m'] > 1 -,

where ¢ is negligible in A.

Privacy requires that it is difficult to recover m only given £(P,m). Formally,
we say that ARE satisfies privacy if the advantage of an adversary A against
privacy satisfies

; k
Advi[{"éj’ = Pr[m’ = m|m’ & AP,E(P,m))] < = 4 -2

where k1 and ko are polynomial in A.

Unlinkability requires that it is difficult to guess whether two encodings come
from the same message or not, when the messages are unknown. Formally, un-
linkability is defined via the following game. The challenger chooses a pair of
distinct messages mg and m1, and a bit b, uniformly at random. The adversary
A has polynomially-many access to encoding oracles Og,(-) and Og, (-), which
returns encodings of mgy and my respectively. A is also given an encoding of
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my, i.e., £(my). Finally, A outputs a bit 0. We say that ARE is unlinkable if
the advantage of an adversary breaking the Unlink game, denoted by AdeE"E""fq,

satisfies

AdvRRik = Pr(’ = blb & {0,1},mo & M,my & M\ {mo},

1
y & A%0Oe (P E(Pmy))] - 5|

where k1 and ko are polynomial in A.

Note that encodings by PKEET, or any deterministic scheme like DE, would
be insecure under this definition, due to the efficient algorithm for deciding if
two ciphertexts are encrypting the same plaintext.

4 System Model

We follow the system model of Berkovsky et al. [8]. We assume that users are
organized in a purely P2P manner [11]. Within this P2P network, users could
freely contact any other users who also joined the system. Such a system could
be built using existing technologies (e.g., [3]).

4.1 Profile Representation and Basic System Setup

Every end-user in the system is the holder of their own private user-profiles.
Without loss of generality, we follow the existing representation [30] of user-
profiles in the form of a list of (key, value) pairs, where keys could represent
any commodity like books, movies, or other categories of goods, and values
represent the interest level to the commodity corresponding to the key. Note
that it is easy to transform this (key, value) pair representation into simple
vector representation, as long as the size of possible key set is fixed and the
positions of different keys are determined.

We assume that all participants have previously agreed on a consistent en-
coding of user-profile (e.g., the range of interest level). Also, they have agreed
to use a selected LSH function, and a specific ARE scheme. In other words, the
algorithms to use and their public system parameters are fixed for all users.

We emphasize that we do not assume any trusted or semi-trusted third party
to support our system (although they could be easily added to our system to
support more features). In particular, all the system parameters mentioned above
can be generated without using any secret keys or trapdoor. Using this setting,
we eliminate any trust issue of a single point in terms of privacy and availability.
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4.2 Entities and Threat Model

End-users in the system want to obtain useful information from other partic-
ipants. All users broadcast a short (comparing with the potentially long user-
profile) randomized “identifier”, in the form of encoded LSH digest, to their
neighbourhood. Looking ahead, this “identifier” only leaks just enough infor-
mation for other users to check whether the underlying LSH digest is similar
to theirs or not, and no more information is leaked. We will also show how to
identify similar users non-interactively in the following Section 6.

End-users in our system do not trust each other. In particular, they are only
willing to expose their profile to those who are holding similar user-profile. That
is to say, from an arbitrary user u’s perspective, all other users are divided into
two groups: similar users and dissimilar users, and these two groups are treated
differently. Every dissimilar users and their coalition is treated as an adversary
in our threat model, which is interested to gather global statistics of all users.

We further assume that users are honest-but-curious. That is to say, they
will not deviate from the protocol specification but they want to gain more
information by analyzing protocol transcript offline. Naturally, an adversary can
always prepare a “fake” profile or even inject many such profiles to the system.
Authenticity of profile and sybil-resistance are out of scope of this paper and
can be dealt with additional measures (e.g., [40]). Our goal is to protect against
unnecessary information leakage of users. In particular, the best an adversary
can do is to launch a dictionary attack per each encoded profile obtained.

5 Instantiation of ARE

5.1 Proposed Construction

The parameter generation algorithm P(1%) randomly selects a A-bit prime
p, a prime order group G of order p, and two independent hash functions H; :
{0,1}* — Zy and H; : {0, 1}* — {0,1}*. Parameter P = (p,G, Hy, Hy) is
generated as output. Here, Zy is just [p]. All users joining our system are assumed
to have agreed on a set of public parameters, thus we omit P below as input for
brevity.

The encoding algorithm &£ takes input a A-bit message m, selects a A-bit
random string r uniformly, returns £(m) = (c1,c2) = (M) Ho(m) @ 1) as
output, where M is some efficient mapping of m to a group element in G.

The test algorithm 7 takes input m and £(m’). It first parses £(m’) as

(c1,c2), then compute r = ¢o @ Ho(m), and finally return A1 (") L c1 as output.

5.2 Pre-computation of Honest Users

It is trivial to see that our construction satisfies test correctness. Now we show
the “asymmetry” of our construction. For an honest user holding M, she could
perform some precomputation [27] by preparing M; = M2 fori = 0,1, ..., |p|—1.
Upon receiving some encoding £(m') = (¢, ¢2), she first recovers r by Ha(m)®ca.
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Parameter Generation P (1)

Randomly select p, group G of order p, and hash
functions Hy : {0,1}* — Zj,H2 : {0, 1} — {0, 1}*.
Return P = (p,G, H1, H2).

Encoding £(m)
Randomly select r & {0,1}*. Map m to M € G.
Return (c1,c2) = (M) Hy(m) @ 7).

Testing 7 (m, E(m”))
Parse £(m') as (c1,c2). Map m to M € G.
Compute r = c2 @ Ha(m).

Return MH1() L c1.

Fig. 1. Our Proposed Construction

Let R C [|p|]] be the set of indices such that r[i] = 1. Instead of computing
exponentiation M2(") directly, she only needs to compute a few multiplications,
namely [[,cp Mi, which are quite minimal.

We would like to point out that this pre-computation step does not reduce
the asymptotic complexity of modulo exponentiation. Suppose the base is n-bit
and the exponent is A\-bit, using this pre-computation trick the overall complex-
ity of modulo exponentiation remains O(Ac(n)), where ¢(n) is the complexity of
multiplication. But with proper implementation, this trick could still improve
upon the standard repeated squaring algorithm by some constant factor, which
could make a big difference when we are dealing with big data (of many can-
didate profiles). To see this, notice that an honest user is only interested in
filtering out similar messages. Most of the computation are raising her M up
to a certain power. With the above trick, each exponentiation requires only
A/2 multiplications on average instead of A multiplications using the repeated
squaring algorithm.

On the other hand, when the adversary’s goal is recovering the hidden mes-
sage from a specific encoding or see if any two encodings actually correspond to
the same message, offline dictionary attack is needed to exhaust all possibilities
in the message space M, which we will show shortly afterwards. In other words,
those without a specific m in mind cannot enjoy pre-computation.

5.3 Security Proofs
The following theorem asserts that our scheme satisfies our definition of privacy.

Theorem 1. Our scheme in Figure 1 satisfies privacy and unlinkability (defined
in Section 3) in the random oracle model with Hy and Hs being random oracles.

Proof. The adversary A is given £(m) = (c1, ¢2) = (M) Hy(m)@®r) where m
and r are both chosen uniformly at random. Since H; and Hy are both random
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oracles, both M*1(") and Hy(m) @ r should be totally random from adversary’s
point of view, leaking no information about r and M, unless either Hy(r) or
Hs(m) has been queried by the adversary.

As £(m) = (c1, ¢2) leaks no information about r and M, an adversary could
only make random queries to the two random oracles Hy(-) and H(-). Suppose
the adversary is only given k; and ko accesses to the two random oracles re-
spectively, where k; and ks are positive integers. Then the probability that such
queries collide with r» and m is P, = ’2% and P, = ‘572‘ respectively. By union
bound, the probability that collision happens on either random oracle (which

equals AdvhneY) s

riv; k k
AdViREY =P <P + Py = + ﬁ (1)

which concludes our proof for privacy.
The proof for unlinkability is in spirit very similar to the above proof. At the

very beginning of the game, the challenger secretly picks hg, h1 & {0,1}* and
sets Ho(mg) = hg, Ha(mq) = hy in its internal table. For every query to either
encoding oracles, or for supplying £(my) to the adversary, the challenger always
responds by returning a pair of strings randomly chosen from the appropriate
domain. All these are valid responses unless collision occurs. With no collision,
the adversary can only have % chance in guessing the bit b correctly.

Notice that from adversary’s point of view, for either case of mg or my,
all received encodings can be interpreted in the correct encoding format as
(M71,¢y) = (MHr(2®H2(m) o) @ Hy(m) @& Hy(m)) = (MP12) 1% @ Hy(m)),
where 75 = co ® Ha(m), unless the adversary has queried Hy(co @ Ha(m)) before.
However, co @ Ho(m) is totally random because ¢ is chosen uniformly random
and the adversary do not know Hs(m). As a result, the adversary could only
make random queries to Hy(-) and Ha(:). If it so happened that the adversary
has queried Ha(mg) or Hz(mq), she could easily distinguish £(mg) from £(my)
by recovering r3 and further querying H;(r3). This happens with probability
at most ™ M On the other hand, if the adversary has queried Hj(ce @ hg) or
Hy(ca @ hq) before, then the challenger has no freedom to set 7 to be the hash
value. This happens with probability g—’f, where k is the number of queries made
by the adversary. To conclude, such unlikely event happens With probability at
most 2§ + |%i\ by union bound. Thus we have AdeE"E':Q < %4 i M| which
concludes our unlinkability proof. O

5.4 Discussion

One may ask why we chose to model security using one-wayness. We note that
it is impossible to achieve any security against chosen-plaintext attack (CPA)
or alike formulation because we mandate the “test correctness” requirement. If
an adversary is given the ability to test whether a certain encoding corresponds
to a certain message, he could trivially win any form of CPA game. Similar
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issues have been discussed in the literature of related cryptographic primitives
like PKEET and PKENO [10,46]. Also, there is no guarantee that m would have
high entropy. Thus an adversary could always launch offline-dictionary attack.
However, we insist that offline-dictionary attack should be the “best-possible”
attack, namely there would not be any “smarter” algorithm. This fact is captured
by the right hand side of our probability guarantee in Equation (1). We believe
that we have targeted for “best possible” security in our application.

6 Privacy-Preserving Filtering

We describe our system from the perspective of a user u, from joining the system
to actually obtaining useful recommendations, via the following four stages.

Preparation of User’s Own Profile. User u prepares her own profile, and
applies the LSH function described in Section 3 to obtain a k-bit digest, where k
is some multiple of A. She then chops this digest into blocks of A-bit long strings
mi,mg, ... and encodes these strings to £(my), £(m2), . .. using our ARE scheme.

Broadcasting of Encoded Profile. Every user broadcasts the encodings to
their neighbourhood. This procedure is repeated periodically for informing others
about one’s existence. It is easy to see that a new user can join the system freely.
On the other hand, a time-to-live value can be attached to expire inactive users.

Identification of Matching Profiles. Other users in the system are also
sending their profiles in the network periodically, so user u may receive such
packets. Upon receiving encodings from others, user u decides locally which
users are similar to her. This is done by running algorithm 7 of our ARE on
each block of A-bit string. Specifically, if there are at least ¢ such blocks are
equal to her own digest, then she considers this user to be similar to her. We
call the parameter t as similarity threshold, and it is completely decided by user
u herself. The more identical blocks, the more similar they are.

Actual Recommendation Stage. After some time, user u should be able to
compile a list of similar users with their LSH-digest, and their similarity degree.
User u contacts similar users in order to exchange user profile secretly. The policy
of choosing who to contact is again totally up to user u herself. For example, she
might decide to choose the top 10 similar users, or she might decide to choose 20
random similar users in order to have better diversity. After collecting enough
responses from other similar users, user u runs a memory based collaborative
filtering algorithm (see Section 3) to generate recommendations herself.
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How to Contact Users Securely. There are various ways to implement the
required secure channel. They might just run a Diffie-Hellman key exchange
protocol; or they might decide to run a PAKE protocol with the “password”
being the common bits of their LSH digest which represents their wishes.

The exact information being exchanged between similar users are also up to
their own choice. They can send an obfuscated version of their profile to others.

7 Evaluation

We implement ARE using Crypto++ v5.63. The system we use for performing
our time analysis is Acer Aspire V5-473G, with 8GB memory, and Intel Core
i7-4500U 1.8GHz with Turbo Boost up to 3.0GHz, We use the standard SHA3
hash algorithm to instantiate hash functions H; and Hy'.

We measure the performance in identifying matching profiles using various
parameter settings listed below, where A refers to the security parameter and
k denotes the length of LSH digest. Thus § is the number of blocks. For each
k, A combination, a fixed m is randomly chosen, and 10,000 encoded random
profiles £(m,.) are generated to execute T (m,E(m,)). All the obtained figures
are the averaged result of 10,000 such executions. The times are measured in
milliseconds. Note that we run the experiment using a commodity laptop with
not-yet optimized code. From these figures, it is clear that our scheme is very
efficient and practical.

For the choice of parameters k, A and ¢, intuitively, a larger A enlarges the
size of M, which in turn means better privacy. On the other hand, according to
the property of LSH, it becomes less likely to find an exact match. To overcome
this, we could choose a bigger k to reduce the probability that none of the blocks
matches, at the cost of computation cost and communication overhead. Thus, we
can tune our parameters for different levels of privacy, efficiency, and usability.

Setting Time (ms)|Setting Time (ms)
A =64,k = 256 0.2293|\ = 128,k = 256 [0.2254
A =64,k =>512 0.4603|\ = 128,k = 512 |0.4566
A =64,k =1024 0.9093|\ = 128,k = 1024/0.8633
A =64,k = 2048 1.8152|A =128, k = 2048|1.6962

Fig. 2. Performance Evaluation for 10,000 Profiles

Our system computes a long LSH digest for each profile, chops the LSH digest
into blocks, and uses the number of identical blocks to detect similar profiles.

! We prepend dummy strings S; and So to the input to instantiate two hash
functions. The first A-bit output of SHA3 is picked as output, i.e., H;(m) =
SHA3(S;||m)[0, ..., A — 1] for ¢ € [1,2]. For Hy(m), there exists a small probability
that the output is larger than p — 1. If that occurs, we re-hash the result until it fits.
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This approach is somewhat different from previous schemes [12, 13, 35] where
similarity is measured by the number of identical bits directly. To demonstrate
that our modification works reasonably well, we conducted the following addi-
tional experiment. We constructed a random Netflix user profile p consisting of
200 ratings. Each rating is chosen from a Gaussian distribution with g = 3.8 and
o =1 (according to the statistics of Netflix dataset [21]). Ratings are rounded to
the nearest integers (and confined within {1, -- ,5}) to fit with the Netflix rating
format. Then three other Netflix profiles 71, r2, 73 are randomly constructed to
represent “dissimilar profile”, “similar profile” and “very similar profile” com-
pared with p. These profiles are created by adding zero-mean Gaussian noise
to p with different variances (o = 0.5,0.4,0.3 respectively). An 1024-bit digest
for each of these four profiles are computed using the LSH algorithm described
in Section 3.2. We calculated the number of different bits and also the number
of identical blocks compared with the digest of p (block length is 64-bit). The
above experiment was repeated 500 times by choosing different LSH functions
to obtain the following averaged numbers. The result is summarized in Fig 3,
from which we can conclude that, while the LSH digests of r;’s are all similar
to those of p, there exists a clear distinction among “dissimilar profile”, “similar
profile” and “very similar profile” via our block-wise comparison (see the last
row).

Dissimilar| Similar|Very Similar
Profile r|Profile 7o Profile r3

Noise Variance 0.5 0.4 0.3
# of Different Bits 44.672|  32.042 18.592
# of Identical Blocks 1.08 2.13 5.04

Fig. 3. Performance Evaluation of LSH Algorithm based on ARE (k = 1024, A = 64)

8 Conclusion

In this paper, we present asymmetric randomized encoding, a simple yet novel
cryptographic primitive that could be used for efficient privacy preserving fil-
tering. We define appropriate security notion for this primitive, and provide a
simple and efficient construction. We prove the security of this construction in
the random oracle model and evaluate its performance. We also describe how to
use this primitive to build a practical peer-to-peer privacy-preserving collabora-
tive filtering system.
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